
The FLOWS* Proposal:
Presentation to SWSL Committee

May 13, 2004

D.Berardi, M.Gruninger, R.Hull, S.McIlraith

*FLOWS = First-order Logic Ontology for Web Services [name subject to change]

May 13, 2004 FLOWS strawperson proposal for SWSL 1



Outline
• Representational Desiderata for a WSC ontology
• Features of our Proposal

– FLOWS based on FOL Ontology of WS                               
(PSL is the working hypothesis)

– Identification of subsets of FLOW with attractive computational or 
representational properties

– Surface syntax
– Characterization of reasoning tasks within FOL
– Reasonable computational strategy is critical

• Short-term Tasks
• Case Studies

– Amazon example
– Financial transaction example
– Travel service scenario
– WS Discovery (*new)

• Comparing with and bridging to other SWSL proposals
May 13, 2004 FLOWS strawperson proposal for SWSL 2



Representational Desiderata:
• Model-theoretic semantics **
• Primitive and complex processes are first-class objects  ***
• Taxonomic representation *
• Leverages existing service ontologies (OWL-S) **
• Embraces and integrates with existing and emerging standards and

research  (BPEL, W3C choreography, etc.) *
• Explicit representation of messages and dataflow (cf. W3C 

choreography, behavioral message-based signatures, etc.) ***
• Captures activities, process preconditions and effects on world. *
• Captures process execution history. **

Legend
* we believe this feature is in the requirements document
** this feature represents a refinement of the requirements document
*** this feature represents an extensions to document

May 13, 2004 FLOWS strawperson proposal for SWSL 3



Features
1. FLOWS based on FOL ontology of WS

Working hypothesis: ontology based on PSL, a dialect of the 
situation calculus.

Analysis (FOL language):
+ provides a well-understood model-theoretic semantics
+ rich expressive power (e.g., variables, quantifiers, terms, etc.)

overcomes expressiveness issues that have haunted OWL-S 
+ enables characterization of reasoning tasks in terms of classical 

notions of deduction, consistency, etc.
+ enables exploitation of off-the-shelf systems such as existing FOL 

reasoning engines and DB query engines.
- semi-decidable and intractable for many tasks (worst case) (but note 

that many intractable tasks often prove easily solved in practice)

May 13, 2004 FLOWS strawperson proposal for SWSL 4



Features (cont.)
Analysis (working hypothesis, PSL as a situation calculus dialect):
+ years of development in the business process modeling arena
+ well-established, already proven useful as exchange language
+ extensibility of PSL
+ first-stage characterization of OWL-S semantics
+ specific expressiveness properties:

actions are first-class objects 
occurrence trees
complex actions as first-class objects 
histories
explicit representation of state

- readability and writability
- specific expressive properties:

Ignores continuous change (though sitcal proposals exist)

- no implementation of associated reasoner

May 13, 2004 FLOWS strawperson proposal for SWSL 5



Features (cont.)
2. Identification of subsets of FLOWS with attractive representational 

or computational properties (e.g., decidability or tractability of 
certain reasoning tasks, traded-off against expressiveness)
Examples: OWL-S

Situation Calculus and Golog for WSC
DL for WSC 
Automata-theoretic approaches for WSC
HTN planning for WSC
Potential future mappings of other monotonic

and nonmonotonic formalisms

Analysis (ID of subsets of FLOWS):
+ provides a theoretical mechanism for preserving semantics and relating different SWS 

ontologies
+ enables easy mapping to lite versions of ontology
+ provides basis for blending results about SWS origins in different methodologies (e.g., 

automata-based, DL-based, Petri-net based, sitcalc-based, etc)

May 13, 2004 FLOWS strawperson proposal for SWSL 6



Feature (cont.)

3. Surface Syntax (to be developed)

Analysis:
+ Makes FLOWS readable, easy to use and understand by end users

May 13, 2004 FLOWS strawperson proposal for SWSL 7



Features (cont.)

4. Characterization of SWS reasoning tasks in FOL.
E.g., WSC as deduction 

Query-answering as deduction
WSC, reachability. liveness… as satisfiability

Analysis:
+ enables exploitation of off-the-shelf reasoners, algorithms and 

techniques
+ facilitates implementation
+ improves understanding of task

May 13, 2004 FLOWS strawperson proposal for SWSL 8



Features (cont.)
5. Computational strategy is key.  (FOL theorem proving is not 

considered to be a viable option.)  We would like to identify 
useful subsets of FOL with monotonic/nonmonotonic
semantics, leveraging existing tools:
Candidates: Model-checking

DL reasoners
Prolog
Answer-set programming, etc.
Automata-theoretic techniques, verification tools

Analysis:
+ Exploitation of well-tested existing reasoners

May 13, 2004 FLOWS strawperson proposal for SWSL 9



Short-Term Tasks
• Surface Syntax: Develop a surface syntax

• Computational Infrastructure: Develop a (logic programming?) 
implementation, together with a working demo.

• Concept Coverage: Flesh out definition of concept coverage.  At 
present, we envision this including:
– all concepts in OWL-S (often represented differently to exploit our more 

expressive language)
– other structure for individual services (e.g., automata-based) or 

compositions (e.g., WS-Choreography)
– messages 
– dataflow
– negotiation

• Ontology: Create a presentation of the entire ontology

May 13, 2004 FLOWS strawperson proposal for SWSL 10



Case Studies

• Amazon example
• Financial transaction example 
• Travel service scenario 
• WS Discovery (proposed)

May 13, 2004 FLOWS strawperson proposal for SWSL 11



Financial Transactions Use Case
• Embedding in PSL involves the following:

– Subactivities
– Partially ordered deterministic complex activities
– Precondition axioms

• Conditions on fluents that must hold before an activity can occur
– Context-sensitive effect axioms

• Effects of an activity occurrence can vary depending on fluents
– Classes of activities denoted by terms (with parameters)

• This capability not in OWL

• We illustrate how selected use-case assertions 
can be expressed in PSL
– We rely on quantification over complex activities

May 13, 2004 FLOWS strawperson proposal for SWSL 12



Financial Transactions:
Key Building Blocks
• Activities as terms

∀x  activity( buy_products(x) )
∀x,y,z  activity( transfer(x,y,z) ) 
∀x,y  activity( withdraw(x,y) )
∀x,y  activity( deposit(x,y) )

∀a,y ( a = buy_product(y) ⊃ ∃ x,z subactivity( transfer(x,y,z) , a ) ) 
∀x,y,z  subactivity( withdraw(x,y), transfer(x,y,z) )
∀x,y,z  subactivity( deposit(x,z) ), transfer(x,y,z) )

• Composition relationships

∀o,x  occurrance_of(o, buy_product(x) )  ⊃
∃o1,o2,y,z,w,v  occurrence_of( o1, transfer(y,x,z) 

∧ occurrence_of(o2, transfer(w,x,v) )
∧ subactivity_occurrence(o1, o )
∧ subactivity_occurrence(o2, o )

• Process description for buy_product

• Can represent 
– Other composite activities
– Pre-conditions (e.g., transfers only if sufficient funds)
– Effects (e.g., of a transfer)

May 13, 2004 FLOWS strawperson proposal for SWSL 13



Minimal activity tree
• Assume four atomic activity types

d1 = deposit (100, Account2)
d2 = deposit (5, Account3)

w1 = Withdraw (100, Account1)
w2 = withdraw (5, Account1)

w1 w2

init

w2

d1 d2

d1 d2w1

w2

d2d2 d1

d1 d2 w1

d1d2 d1

May 13, 2004 FLOWS strawperson proposal for SWSL 14



Example assertion from Use Case
• Very preliminary sketch, to give basic idea
• Two transfers of X and Y are equivalent to one transfer 

of X+Y (between same accounts). But the fee is double.
∀ o1,o2 (
equivalent(o1,o2) iff
∀ o3, o4, buyer, seller, broker, amount1, amount2, amount3, fee1, fee2, fee3 
( if occurrence_of ( o1, double_transfer (buyer, seller, broker, amount1, fee1, amount2, fee2)

∧ subactivity_occurrence ( o3, o1) 
∧ subactivity_occurrence ( o4, o1) 
∧ subactivity ( transfer(buyer, seller, amount1), o3)
∧ subactivity ( transfer(buyer, broker, fee1), o3) 
∧ subactivity ( transfer(buyer, seller, amount2), o4)
∧ subactivity ( transfer(buyer, broker, fee2), o4) 

∧

occurrence_of ( o2, merged_transfer(buyer, seller, broker, amount3, fee3 )
∧ subactivity(transfer(buyer, seller, amount3), o2) and
∧ subactivity(transfer(buyer, broker, fee3)), o2)

then amount3 = plus(amount1, amount2) ∧ fee3 = plus(fee1, fee2)
)

May 13, 2004 FLOWS strawperson proposal for SWSL 15



Another assertion from Use Case
• Very preliminary sketch, to give basic idea
• Multiple international money transfers on the same 

account are not executed in parallel by bank B unless 
the costumer has a long-lasting relationship with bank B

∀ o1, o2, account, account1, account2, amount1, amount2 (
if   occurrence_of ( o1,  transfer(account, account1, amount1) )

∧ occurrence_of ( o2, transfer(account, account2, amount2) ) 
∧ "o1 is international"
∧ "o2 is international" 

then precedes(o1, o2) or precedes(o2, o1)

May 13, 2004 FLOWS strawperson proposal for SWSL 16



May 13, 2004 FLOWS strawperson proposal for SWSL 17

book_plane
Prec:  plane_booked = false

Input: depature_city, 
date_leave,      
arrival_airport,      
date_back

Output: ticket_plane_id

Eff: plane_booked = true

book_hotel
Prec:  hotel_booked = false

Input:  hotel_city, 
date_arrive,             
date_back

Output:  name_hotel, 
hotel_booking_id

Eff: hotel_booked = true

register_event
Prec: event_booked = false

Input: event_name, 

Output:  start_attend_date, 
end_attend_date, 
registration_id, 
city_nearby_hotel, 
nearby_airport

Eff: event_booked = true

Travel Use Case
An example of rich services and rich composition
• Atomic and non-atomic (fsa-based) “base” services
• Sequential and interleaved composition
• Activities and messages in one framework
Three services
• Different kinds of users want the services called in 

different orders
– E.g., tourist wants hotel; plane; event 

We illustrate how PSL can express 3 perspectives:
1. Atomic / SingleUse (cf OWL-S)

– View each service as atomic 
– Create composite service for one use only

2. Interactive / generic re-usable (cf Roman model)
– View each service as activity-based fsa 
– Create re-usable composite service targeted to any user

3. Blending of activity-based and message-based
– View message send/receive as activities
– Record message contents in predicate-based fluents
– Can describe data flow, track history 



May 13, 2004 FLOWS strawperson proposal for SWSL 18

1. Atomic eService/SingleUse composition (sketch)

//  establish sub-activity structure for Maria_serv

subactivity(launch, Maria_serv) ∧ subactivity(book_hotel, Maria_serv) ∧
subactivity(book_plane, Maria_serv) ∧ subactivity(register_event, Maria_serv) 

//  characterize all possible occurrances of Maria_serv (i.e., all paths in activity tree for Maria_serv)

∀x. occurrence_of (x, Maria_serv) ⇔

//  exists a root atomic occurrance and atomic occurrance of book_hotel activity

(∃o1  occurrence_of(o1,book_hotel) ∧ subactivity_occ(o1, x) ∧ root(o0,x) ∧

(if    ¬ ( prior(Precond_hotel, o1) ∧ prior(Input_hotel, o1) )                                                         
then ( holds(Failure_hotel_booking , o1) ∧ leaf_occurrence(o1, x) )                                       
else ( holds(Eff_hotel, o1) ∧ holds(success_hotel_booking,01) ∧

//  if the book_hotel occurrance succeeded, then there is also an occurrance of  book_plane

∃ o2. ocurrence_of(o2, book_plane) ∧ subactivity_occ(o2, x) ∧ next_subocc(o1, o2, x)                                
(if ¬ ( prior(Precond_plane, o2) ∧ prior(Input_hotel, o2))                                                          
then (  holds(Failure_plane_booking, o2) ∧ leaf_occurrence(o2, x) )                               
else ( holds(Eff_plane, o2) ∧ holds(Success_plane_booking, o2) ∧

//  if the book_plane occurrance succeeded, then there is also an occurrance of  register_event 

∃ o3.  occurrence_of(o3, register_event) ∧ subactivity_occ(o3, x) ∧ next_subocc(o2, o3, x) ∧
(if ¬ ( prior(Precond_event, o3) ∧ prior(Input_event, o3))                                                          
then (  holds(Failure_event_booking, o3) ∧ leaf_occurrence(o3, x)                                        
else (  holds(Eff_event, o3) ∧ holds(Success_event_booking, o3) ∧ leaf_occurrence(o3, x))  ))))))

//  some notational short-hand

Precond_hotel ⇔ ¬ booked_hotel; Eff_hotel ⇔ booked_hotel; ...similar for plane and event

• Building composite activity “Maria_serv” for tourist Maria
• Specify that  the three atomic services are in sequence; include simple exception handling
• (Selected) fluents:booked_xxx, Success_xxx_booking, Fail_xxx_booking

[ “Fail_hotel_booking” 
is true]

The three activity trees (up to 
isomorphism) corresponding 
to composite activity 
Maria_serv as defined in 
green box.   Maria_serv can 
be defined in a variety of 
ways, leading to different 
(sets of) activity trees

book_hotel

[ “Success_hotel_booking” 
is true]

book_hotel

book_plane

[ “Success_hotel_booking” 
is true]

book_hotel

book_plane

[ “Fail_plane_booking” 
is true]

[ “Success_plane_booking” 
is true]

book_event



May 13, 2004 FLOWS strawperson proposal for SWSL 19

ϕM(x) =  (  

// initial situation    ∃ o. occurrence_of(o, launch) ∧ root(o,x) ∧ holds(p, launch) 

// for all transitions in FSA M include the following (the following example is for δ(p,a) = t)

∀o1, o2   if (subactivity_occurrence(o1, x) ∧ subactivity_occurrence(o2, x)  ∧
next_subocc(o1, o2, x)  then ( holds(p, o1) ∧ occurrence_of(o2, a) → holds(t, o2) )

// from a given atomic occurrance, there is at least one child for each transition out of the corresponding 
state, and no illegal transitions (the following is for atomic occurrance o1 that corresponds to being in state p)

∀o1  if (subactivity_occurrence(o1, x) ∧ holds(p, o1)                                                       
then ∃ o2 (subactivity_occurrence(o2, x) ∧ next_subocc(o1, o2, x) ∧ occurrence_of(o2, a)             

∧ ∃ o2 (subactivity_occurrence(o2, x) ∧ next_subocc(o1, o2, x) ∧ occurrence_of(o2, b)               
∧ ¬ ∃ o2 (subactivity_occurrence(o2, x) ∧ next_subocc(o1, o2, x) ∧ occurrence_of(o2, c)

// for all final states include the following (the following example is for s in final states)
∀o (if leaf_occurrence(o, x) → holds(s, o)     )

2a. Representing in PSL a complex process, whose internal 
structure corresponds to an activity-based FSA (sketch)

We illustrate the encoding using an abstract example
• Assume 1 fluent per state, assert that only one state-fluent can be true at a time
• We transform the fsa by adding a new start-state with “launch” activity

Parts of (representative) “activity tree” for M 
[This tree might be embedded into an “occurrence tree” which 

represents a family of concurrent activity occurrences]

s

z p tlaunch a

c

o_1

o_2 
(action a)

[p is true]

[t is true]

[p is true]b

o  
(action launch)

[s is true]

o_3 
(action b)

d

FSA   M



2b. Comments re embedding of FSA descrips into PSL

We have sketched a specific way to build up a formula ϕM(.) as described 
informally on prevoius slide

• Conjecture (“Faithfulness”): x satisfies formula ϕM(x) iff x is an activity tree 
and there is a mapping between accepted words of M and finite branches of x.  
– For each word w in L(M) at least one finite branch with actions corresponding to w
– For each finite branch β satisfying appropriate fluents at the end, there is a word in 

L(M) corresponding to β

• Can build similar formula χ(x) characterizing a single path through the activity 
tree for M, i.e., (finite branch) x satisfies χ(x) iff x corresponds to an accepted 
word of M

• Can build similar formula ΨM(x,z) stating that x is the activity tree of M 
embedded into the occurrence tree z

• Given a UDDI+, can build a ϕM(.) for each M in the UDDI+
– Open problem: Can we reify the UDDI+ directory, and talk about member_of(x,U) ??

• Open problem (informal statement): Is there a “generic” first-order formula 
Γ(ϕM(.), ϕN(.)), such that for arbitrary fsa’s M and N and associated formulas 
ϕM(.) and ϕN(.), we have Γ(ϕM(x), ϕN(y)) iff L(M) = L(N)
– At a minimum, given fsa’s M and N, you can by hand build a formula stating that M 

and N accept equiv languages

May 13, 2004 FLOWS strawperson proposal for SWSL 20



2c. Using automated composition to create re-usable, 
generic composition of interactive (fsa-based) services

May 13, 2004 FLOWS strawperson proposal for SWSL 21

• The base services for this example are richer than for previous example
• (We think that) we can encode multiple FSA’s, and describe requirements 

for a composition (via delegator) to exist (in spirit of “Roman” results)

register_event

book_planebook_limo

book_airtravel

book_ 
limo

book_train

book_
traintravel

register
_event

UDDI++

book_train

book_
plane

book_hotel

book_
hotel

book_
plane

book_
train

book_limo
register_ 
event

book_accom
_shuttle

book_
hotel

book_limo

book_limo

book_limo

book_acco
m_shuttle

Delegator (color indicates which FSA performs action)

book_
train

book_
plane

book_
hotel

book_hotel

book_
plane

book_train

book_
limo register_

event

book_
accom_
shuttle

book_accom_
shuttle

Desired re-usable service

book_
hotel

book_resid
ence

list_nearby_
facilities

book_accom_
shuttle

book_accomo
dation



May 13, 2004 FLOWS strawperson proposal for SWSL 22

3a. Message Passing between atomic services 
(illustration in very simple context)

µ(x)  ⇔

// basic structure of book_plane

occ_of(x, book_plane) ∧

∃ o1, o2, o3 (sub_act(o1, x) ∧ sub_act(o2, x) ∧ sub_act(o3, x) ∧
occ_of(o1, book_plane_rec) ∧
occ_of(o2, book_plane_exec) ∧
occ_of(o3, book_plane_send) ∧

// “glue” between book_hotel and book_plane

(∃o4 o5  occ_of(o5, reg_event) ∧ sub_act(o4, o5) ∧
occ_of(o4, reg_event_send) ∧ leaf_occ(o4, o5) ∧
next_subocc(o1, o4) )    ∧

// reading from message repository

(∃m’, v’, m’’, v’’, m’’’, v’’’, m’’’’, v’’’’
(prior (mess_repos(book_plane, m’), o1) ∧
mess_type(m’, departure_city) ∧ mess_value(m’, v’) ∧
¬holds(mess_repos(book_plane, m’), o1) ∧
... /* similar for m’’, m’’’, m’’’’ */                                         ) ∧

// execution of book_plane_execute ...

// sending messages to regist_event ...

// “glue” between book_plane and register_event

bo
ok

_p
la

ne
re

gi
st

_ 
ev

en
t

bo
ok

_ 
ho

te
l

book_plane_
receive

book_plane_
execute

book_plane_
send

book_hotel_
send

register_event_
receive

.

.

.

.

.

• book_plane assumed to have 3 sub-activities: _receive, _execute, _send 
• Use predicate-based fluent “mess_repos(service_name, message_variable)” to hold 

messages being passed to a service



May 13, 2004 FLOWS strawperson proposal for SWSL 23

//  Values passed from book_hotel to book_plane

o is occ of composite service                                       
o1 is occ of book_plane_receive …
∃i, m, v  ( input_type(i, date_arrive) ∧ input_value(i, v) ∧
mess_type(m, date_leave) ∧ mess_value(m, v) ∧
prior(mess_repos(comp_service, i), o) ∧
prior (mess_repos(book_plane, m), o1) 

//  Constraint between input values

o is occ of composite service                                           
o1 is occ of book_hotel; o2 is occ of book_plane …
∃i, i’, v,v’ (                                                         
input_type(i, date_arrive) ∧ input_value(i, v) ∧
input_type(i’, date_leave) ∧ input_value(i’, v’) ∧
element_of(v, v’) 

book_hotel

register_event

Prec:  plane_booked = false

Input: depature_city, 
date_leave,    
arrival_airport,      
date_back

Output: ticket_plane_id

Eff: plane_booked= true

book_plane

Prec: hotel_booked = false

Input:hotel_city, 
date_arrive,        
date_back

Output: name_hotel, 
hotel_booking_id

Eff: hotel_booked = true

Prec: event_booked = false

Input: event_name, 

Output: start_attend_date, 
end_attend_date, 
registration_id, 
city_nearby_hotel, 
nearby_airport

Eff: event_booked = true

==

∈

near

∈

3b. Expressing Constraints 
on Data Flow

• Can express variety of data flow 
constraints

• Assume the 3 atomic services as on 
previous slide

Legend
data in/out of composite service
data flow within composite service
constraint on data flowing within 
composite service


	The FLOWS* Proposal:Presentation to SWSL CommitteeMay 13, 2004
	Outline
	Representational Desiderata:
	Features
	Features (cont.)
	Features (cont.)
	Feature (cont.)
	Features (cont.)
	Features (cont.)
	Short-Term Tasks
	Case Studies
	Financial Transactions Use Case
	Financial Transactions:Key Building Blocks
	Minimal activity tree
	Example assertion from Use Case
	Another assertion from Use Case
	1. Atomic eService/SingleUse composition (sketch)
	2a. Representing in PSL a complex process, whose internal structure corresponds to an activity-based FSA (sketch)
	2b. Comments re embedding of FSA descrips into PSL
	2c. Using automated composition to create re-usable, generic composition of interactive (fsa-based) services
	3a. Message Passing between atomic services (illustration in very simple context)

