
'

&

$

%

Concurrent Transaction Logic by Example

(with emphasis on stuff deemed to be relevant to SWS)

Michael Kifer

Stony Brook University, NY, USA

CTR by Example 1

'

&

$

%

Transaction Logic Extends Predicate Calculus

Standard Predicate Logic

(adds sequencing, hypotheticals)

(adds concurrent execution)

Programming Language
(rules and non−monotonicity)

Concurrent Transaction Logic

Other Extensions

Transaction Logic

CTR by Example 2

'

&

$

%

What Is It?

1. Logic for defining “procedures” for querying and updating the

underlying logical theory (database).

2. Not an ontology – unlike PSL.

3. Formulas are executable specifications that actually perform

actions.

4. Programming language – “Prolog done right” if you will.

5. Does not specify properties of processes – at least not directly.

6. Orthogonal to things like Description Logic, F-logic, etc.

Therefore, these can be used in conjunction.

7. Can be thought of as orthogonal to the ontology part of PSL.

CTR by Example 3

'

&

$

%

What Is It? (Contd.)

1. Has model theory.

2. Proof theory for the programming part of the logic.

3. Formulas are viewed as programs (transactions) that perform

operations that query and modify the database.

4. As the proof theory proves a formula, it finds the execution

path of the formula, i.e., a sequence of states that would result

if the transaction executed.

Transactions are actually executed as proofs get constructed.

CTR by Example 4

'

&

$

%

Process Modeling with Concurrent Transaction Logic

1. Sequential composition of processes

2. Parallel composition of processes

3. Alternative executions (transactions can be non-deterministic)

4. Pre/post conditions

5. Constraints on execution (state constraints, temporal, etc.)

6. Workflow modeling and reasoning

7. Planning

8. Communication through Messages

9. ...

CTR by Example 5

'

&

$

%

Syntax

∧, ∨, ¬ — “classical” connectives

⊗, | — new connective

Also hypothetical operators (will not discuss)

• α ∧ β – execute α so that it’ll also be a valid execution of β.

Usually used in the context where β is a constraint

on the execution of α.

• α ∨ β – execute α or β (alternatives, non-determinism).

• ¬α – execute in any way, provided that the resulting

execution is not a valid execution of α.

• α⊗ β – Execute α then execute β (serial conjunction).

• α | β – Execute α and β in parallel (parallel conjunction).

• ∃Xα(X) – Execute α for some X.

CTR by Example 6

'

&

$

%

Simple Example: Money Transfer

Transfer Amt from account a123 to account Acct (variables are

uppercased, h ← b ≡ h ∨ ¬b):

payTo(Amt,Acct)← withdraw(Amt, a123) ⊗ deposit(Amt,Acct).

withdraw(Amt,Acct) ← balance(Acct,B) ⊗ B ≥ Amt⊗
delete(balance(Acct,B))⊗
insert(balance(Acct,B −Amt)).

deposit(Amt,Acct) ← balance(Acct,B)⊗
delete(balance(Acct,B))⊗
insert(balance(Acct,B +Amt)).

Query : ?− payTo(100,mortgage) ⊗ payTo(100, creditCard).

• What would Prolog do if account a123 had only $150?

CTR by Example 7

'

&

$

%

Actions That Change State

• Certain predicates can be defined as state-changing updates

using the so-called Transition Oracle

• Transition oracle is a parameter to the logic.

– Transition oracles can define very different state-changing

operations (e.g., insert/delete facts, insert/delete rules, etc.)

– Different oracles make different Transaction Logics.

(But the model theory and proof theory do not change –

they are defined modulo the oracle.)

– In the above (and other examples here) we assume that we

are dealing with relational states (simple sets of facts).

– Assume that the oracle defines the following updates:

delete(fact) in state D returns state D− {fact}.
insert(fact) in state D returns state D ∪ {fact}.

CTR by Example 8

'

&

$

%

Example: A Recursively Defined Transaction

Stacking blocks:

stack(0, X).

stack(N,X)← N > 0 ⊗ move(Y,X) ⊗ stack(N − 1, Y)

move(X,Y)← pickup(X) ⊗ putdown(X,Y)

pickup(X)← clear(X) ⊗ on(X,Y)

⊗ delete(on(X,Y)) ⊗ insert(clear(Y))

putdown(X,Y)← wider(Y,X) ⊗ clear(Y)

⊗ insert(on(X,Y)) ⊗ delete(clear(Y))

Note: stack is non-deterministic and recursive

CTR by Example 9

'

&

$

%

Bid Evaluation Workflow

AND
XOR

OR

Decision
Final

D.Final = Reject

D.Final = Accept

Store

Risk
Analysis

Consultant
External

Billing
Consultant

Update
Cost Budget

Update
Bid

Bid
Receive

Evaluation
Technical

Contractor
Analysis
Financial

Evaluation

O.Eval = {Low, High}

C.Cost < Budget

r

o f

dsbc

t i

me

❏

4. c before f
3. IF occurs (t) AND occurs (e) THEN e before i
2. IF occurs (e) THEN o before e
1. IF o.eval = low THEN not e

Global Coordination Dependencies:

Control Flow Graph:❏

CTR by Example 10

'

&

$

%

Capturing Bid Evaluation Workflow

• Control-flow graphs translates straightforwardly into logic

programming style rules (in Concurrent Transaction Logic).

� - isolated (non-interleaved) execution – not discussed previously.

bid eval ← r ⊗ (financial | db updates | technical) ⊗ rest

financial ← o ⊗ ([o.eval = “high”]⊗ f) ∨ (low ⊗ f)

db updates ← �(c⊗ [c.cost < budget] ⊗ b) ⊗ s

technical ← (t⊗ i) ∨ (e⊗m) ∨ (t⊗ i | e⊗m)

· · ··

• Global Coordination Dependencies can be specified as well:

1. Olow → ¬Oe 3. Ot ∧ Oe→ Oe⊗ Oi

2. Oe→ (Oo⊗ Oe) 4. Oc⊗ Of

(Oφ means “action φ occurs somewhere during execution” – can be

expressed in CTR.)

CTR by Example 11

'

&

$

%

Reasoning/Execution with Constraints

CTR proof theory can:

• Schedule workflows subject to constraints.

• Decide whether workflow is consistent with a set of constraints.

• Decide whether some constraints imply other constraints.

CTR by Example 12

'

&

$

%

The Dining Philosophers: Communication and Messages

CTR by Example 13

'

&

$

%

Dining Philosophers in CTR

N rounds of thinking & eating for a party of X philosophers:

thinkEat(Ph,X)← think(Ph)⊗ take2Sticks(Ph,X)

⊗ eat(Ph)⊗ put2Sticks(Ph,X).

thinkEatLoop(Ph,X,N)← N > 0⊗ thinkEat(Ph,X)

⊗ thinkEatLoop(Ph,X, (N − 1)modX).

thinkEatLoop(Ph,X, 1)← send(Ph, done).

CTR by Example 14

'

&

$

%

The Battle of the Chopsticks:

take2Sticks(Ph,X)← takeStick((Ph− 1) modX)⊗ takeStick(Ph).

put2Sticks(Ph,X)← putStick((Ph− 1) modX)⊗ putStick(Ph).

takeStick(Ph, St)←
send(Ph, request(St))⊗ receive(Ph, grant(St)).

putStick(Ph, St)← send(Ph, relinquish(St)).

think(Ph)← ...definition of the thinking process.

eat(Ph)← ...definition of the eating process.

CTR by Example 15

'

&

$

%

The Stick Manager:

stickMngr(N)← receive(Ph, request(St))

⊗ ontable(St)⊗ delete(ontable(St))

⊗ send(Ph, granted(St))⊗ stickMngr(N).

stickMngr(N)← receive(Ph, relinquish(St))

⊗ insert(ontable(St)) ⊗ stickMngr(N).

stickMngr(N)← receive(Ph, done)⊗ stickMngr(N − 1).

stickMngr(0).

Dinner for Three (100 rounds):

?− thinkEatLoop(1, 3, 100) | thinkEatLoop(2, 3, 100)

| thinkEatLoop(3, 3, 100) | stickMngr(3).

CTR by Example 16

'

&

$

%

Planning with Transaction Logic

• Main ideas illustrated using STRIPS.

• Easy to define much more sophisticated strategies.

CTR by Example 17

'

&

$

%

STRIPS

A simple planning system. Actions have the form:

Name: unstack(X,Y)

Comment : Pick up block X from block Y

Precondition: handempty, clear(X), on(X,Y)

Delete: handempty, clear(X), on(X,Y)

Insert : clear(Y), holding(X)

• Uses an ad hoc algorithm to construct plans.

• Most AI planning systems use ad hoc algorithms.

• We can write planning strategies at the high level in

Transaction Logic without worrying about the low-level details

CTR by Example 18

'

&

$

%

The Planning Problem

• Given a set of primitive actions, a1, ..., an

– each ai has a precondition and an effect (the definition of

the change it makes)

• a goal, G (the condition on the final database state that we

want to achieve)

• and the initial state D0

Find a sequence of the actions that starting at D0 leads to a state

D that satisfies G.

CTR by Example 19

'

&

$

%

Planning with TR

Naive planning is easy:

plan← action⊗ plan.
plan← action.

action← a1.

· · ·
action← an.

Naive planning — just pose the query: ?− plan⊗ goal.
For instance, ?− plan⊗ (on(b, c)⊗ on(c, d)⊗ clear(b)).
will find a sequence of actions that puts b on c, c on d, and leaves b

clear.

• Problem: inefficient, might search through all sequences.

CTR by Example 20

'

&

$

%

Representing STRIPS in Transaction Logic

First, write a rule for each action — straightforward:

unstack(X,Y) ←
handempty ⊗ clear(X)⊗ on(X,Y)

⊗ delete(clear(X))⊗ delete(on(X,Y))

⊗ delete(handempty)

⊗ insert(holding(X))⊗ insert(clear(Y))

CTR by Example 21

'

&

$

%

Representing STRIPS in Transaction Logic (cont’d)

Second, show how to achieve each goal of interest:

achieveClear(Y)← achieveUnstack(X,Y).

achieveHolding(X)← achieveUnstack(X,Y).

achieveUnstack(X,Y)←
(achieveClear(X) | achieveOn(X,Y) | achieveHandempty)

⊗ unstack(X,Y).

• To achieve a goal, achieve the precondition of an action that

inserts that goal

• To achieve action precondition, achieve each of the subgoals in

that precondition

CTR by Example 22

'

&

$

%

Representing STRIPS in Transaction Logic (cont’d)

Base cases: if a goal is already true then it has been achieved.

achieveOn(X,Y)← on(X,Y).

achieveClear(Y)← clear(Y).

achieveHolding(X)← holding(Y).

achieveHandempty ← handempty.

CTR by Example 23

'

&

$

%

Representing STRIPS in Transaction Logic (cont’d)

A planning query : Stack c on d and b on c.

?− (achieveOn(b, c) | achieveOn(c, d))⊗ on(b, c)⊗ on(c, d).

Finds a solution when one exists

• STRIPS was not based on a logic, so they had to develop an

execution mechanism

• The original STRIPS was not complete. Was made complete

after a series of papers

• Using an appropriate logic makes the whole problem trivial

CTR by Example 24

