N

Concurrent Transaction Logic by Example
(with emphasis on stuff deemed to be relevant to SWS)

Michael Kifer
Stony Brook University, NY, USA

CTR by Example

-~

Transaction Logic Extends Predicate Calculus

,. Programming Language
E.._..._.“_..._..._.._..._..._..._..._..._..._..._..._...’"_/..;’_".’.._4.._..._..._.4._..._..._..4_...,: (ru|65 and non-monotd{nicity)

Other Exténsions

- Concurrent Transaction Logic |
(adds concurfent execution)

. Transaction Logic 5
(adds sequen"ping, hypotheticals)

Standard bre\d\icate Logic

CTR by Example

~

. Logic for defining “procedures” for querying and updating the

What Is It?

underlying logical theory (database).
. Not an ontology — unlike PSL.

. Formulas are executable specifications that actually perform
actions.

. Programming language — “Prolog done right” if you will.
. Does not specify properties of processes — at least not directly.

. Orthogonal to things like Description Logic, F-logic, etc.
Therefore, these can be used in conjunction.

. Can be thought of as orthogonal to the ontology part of PSL.

/

CTR by Example

N

What Is It? (Contd.)

. Has model theory.
. Proof theory for the programming part of the logic.

. Formulas are viewed as programs (transactions) that perform

operations that query and modify the database.

As the proof theory proves a formula, it finds the execution
path of the formula, 7.e., a sequence of states that would result
if the transaction executed.

Transactions are actually executed as proofs get constructed.

/

CTR by Example

-~

N

. Sequential composition of processes

© 0 N e v W

~

Process Modeling with Concurrent Transaction Logic

Parallel composition of processes

Alternative executions (transactions can be non-deterministic)
Pre/post conditions

Constraints on execution (state constraints, temporal, etc.)
Workflow modeling and reasoning

Planning

Communication through Messages

CTR by Example

/ Syntax \

A, V, — — “classical” connectives
®,| — mnew connective

Also hypothetical operators (will not discuss)

e o N3 — execute a so that it’ll also be a valid execution of (3.
Usually used in the context where 3 is a constraint

on the execution of «.
e oV /3 — execute a or § (alternatives, non-determinism).

e —a — execute in any way, provided that the resulting

execution is not a valid execution of «.
e a® [— Execute a then execute 3 (serial conjunction).

e | 3 — Execute a and [in parallel (parallel conjunction).

\o dXa(X) — Execute a for some X. /

CTR by Example

/ Simple Example: Money Transfer \

Transfer Amt from account a123 to account Acct (variables are
uppercased, h <— b = hV —b):

payTo(Amt, Acct) <— withdraw(Amt,al123) ® deposit(Amt, Acct).
withdraw(Amt, Acct) <— balance(Acct, B) @ B > Amt®
delete(balance(Acct, B)) ®
insert(balance(Acct, B — Amt)).
deposit(Amt, Acct) <— balance(Acct, B) ®
delete(balance(Acct, B)) ®
insert(balance(Acct, B + Amt)).

Query : 7 — payTo(100, mortgage) ® payTo(100,creditCard).

(What would Prolog do if account a123 had only $1507 /

CTR by Example

-

N

Actions That Change State \

e Certain predicates can be defined as state-changing updates
using the so-called Transition Oracle

e Transition oracle is a parameter to the logic.

— Transition oracles can define very different state-changing
operations (e.g., insert/delete facts, insert /delete rules, etc.)

— Different oracles make different Transaction Logics.
(But the model theory and proof theory do not change —
they are defined modulo the oracle.)

— In the above (and other examples here) we assume that we
are dealing with relational states (simple sets of facts).

— Assume that the oracle defines the following updates:
delete(fact) in state D returns state D — { fact}.
insert(fact) in state D returns state D U { fact}.

/

CTR by Example

/ Example: A Recursively Defined Transaction \

Stacking blocks:

stack(0, X).
stack(N,X) <= N >0 ® move(Y, X) ® stack(N —1,Y)
move(X,Y) <— pickup(X) ® putdown(X,Y)

pickup(X) <— clear(X) ® on(X,Y)

® delete(on(X,Y)) ® insert(clear(Y))
putdown(X,Y) <— wider(Y,X) ® clear(Y)

® insert(on(X,Y)) ® delete(clear(Y))

Qote: stack 1s non-deterministic and recursive /

CTR by Example

/ Bid Evaluation Workflow
[1 Control Flow Graph:

Contractor Financial
Evaluation Analysis
o O f
O.Eval = {Low, High}
______________ D.Final = Accept
C.Cost < Budget T . © A =
N r N r N
O b - S d <3 XOR
N A | \St A
——————————————— ore Final s>
Budget Bid iq D.Final = Reject
Update Update Decision 9
Technical Risk
Evaluation — Analysis
t i
R >
e m
External Consultant
Consultant Billing

[1 Global Coordination Dependencies:

1. IF oeval = low THEN not e

IF occurs(e) THEN o before e

IF occurs(t) AND occurs(e) THEN e before i
c before f

Eal A

N

CTR by Example

-~

e Control-flow graphs translates straightforwardly into logic

Capturing Bid Evaluation Workflow

programming style rules (in Concurrent Transaction Logic).

® - isolated (non-interleaved) execution — not discussed previously.

bid_eval — r ® (financial | db_updates | technical) ® rest
financial <+~ o ® ([o.eval = “high”’|®f) V (low ® f)
db_updates <+ (O(c® [c.cost < budget] @ b) ® s

technical — (t®i) V (erm)V (t®Ri|ex®m)

e Global Coordination Dependencies can be specified as well:

1. Viow — —Ve 3. Vt AVe — Ve® Vi
2. Ve— (Vo®Ve) 4. vVc® Vf

(V¢ means “action ¢ occurs somewhere during execution” — can be
expressed in CTR.)

N

CTR by Example

11

Reasoning/Execution with Constraints

CTR proof theory can:

e Schedule workflows subject to constraints.

e Decide whether workflow is consistent with a set of constraints.

e Decide whether some constraints imply other constraints.

N /

CTR by Example

12

4 N

The Dining Philosophers: Communication and Messages

CTR by Example

13

4 N

Dining Philosophers in CTR

N rounds of thinking & eating for a party of X philosophers:

thinkFEat(Ph, X) <— think(Ph) ® take2Sticks(Ph, X)

® eat(Ph) ® put2Sticks(Ph, X).
thinkEatLoop(Ph, X, N) <— N > 0® thinkFEat(Ph, X)

® thinkEatLoop(Ph, X, (N — 1)modX).
thinkEatLoop(Ph, X,1) <— send(Ph, done).

N /

CTR by Example

14

4 N

The Battle of the Chopsticks:

take2Sticks(Ph, X) <— takeStick((Ph — 1) mod X) ® takeStick(P]
put2Sticks(Ph, X) <— putStick((Ph — 1) modX) ® putStick(Ph).
takeStick(Ph, St) <—

send(Ph,request(St)) ® receive(Ph, grant(St)).
putStick(Ph, St) <— send(Ph,relinquish(St)).
think(Ph) <— ...definition of the thinking process.

eat(Ph) <— ...definition of the eating process.

).

N /

CTR by Example

15

ﬁhe Stick Manager:

stickMngr(N) <— recetve(Ph,request(St))

® ontable(St) @ delete(ontable(St))

® send(Ph, granted(St)) ® stick Mngr(N).
stickMngr(N) <— recetve(Ph, relinquish(St))

® insert(ontable(St)) ® stickMngr(N).

stickMngr(N) <— recetve(Ph,done) @ stickMngr(N — 1).

stickMngr(0).

Dinner for Three (100 rounds):

? — thinkFEatLoop(1,3,100) | thinkEatLoop(2,3,100)
| think EatLoop(3,3,100) | stickMngr(3).

N

/

CTR by Example

16

N

Planning with Transaction Logic

e Main ideas illustrated using STRIPS.

e FEasy to define much more sophisticated strategies.

CTR by Example

17

-~

STRIPS

A simple planning system. Actions have the form:

Name: unstack(X,Y)

Comment: Pick up block X from block Y
Precondition: handempty, clear(X), on(X,Y)
Delete: handempty, clear(X), on(X,Y)
Insert: clear(Y), holding(X)

e Uses an ad hoc algorithm to construct plans.
e Most Al planning systems use ad hoc algorithms.

e We can write planning strategies at the high level in

N

Transaction Logic without worrying about the low-level details

/

CTR by Example

18

4 N

The Planning Problem

e Given a set of primitive actions, a4, ..., a,

— each a; has a precondition and an effect (the definition of

the change it makes)

e a goal, G (the condition on the final database state that we

want to achieve)
e and the initial state Dy

Find a sequence of the actions that starting at D leads to a state
D that satisfies G.

N /

CTR by Example

19

/ Planning with TR \

Naive planning is easy:

plan <— action ® plan.
plan <— action.

action <— aj.

action <— a,,.

Naive planning — just pose the query: 7 — plan ® goal.
For instance, 7 — plan ® (on(b, c) ® on(c,d) ® clear(b)).

will find a sequence of actions that puts b on ¢, ¢ on d, and leaves b
clear.

\o Problem: inefficient, might search through all sequences. /

CTR by Example

20

-~

Representing STRIPS in Transaction Logic

First, write a rule for each action — straightforward:

unstack(X,Y) <—
handempty ® clear(X) ® on(X,Y)
® delete(clear(X)) @ delete(on(X,Y))
® delete(handempty)
® insert(holding(X)) ® insert(clear(Y'))

N

CTR by Example

21

4 N

Representing STRIPS in Transaction Logic (cont’d)

Second, show how to achieve each goal of interest:

achieveClear(Y) <— achieveUnstack(X,Y).
achieveHolding(X) <— achieveUnstack(X,Y).
achieveUnstack(X,Y) <—
(achieveClear(X) | achieveOn(X,Y) | achieve Handempty)
® unstack(X,Y).

e To achieve a goal, achieve the precondition of an action that

inserts that goal

e To achieve action precondition, achieve each of the subgoals in

that precondition

N /

CTR by Example

22

4 N

Representing STRIPS in Transaction Logic (cont’d)

Base cases: if a goal is already true then it has been achieved.

achieveOn(X,Y) <— on(X,Y).
achieveClear(Y') «— clear(Y).
achieveHolding(X) <— holding(Y).

achieve Handempty <— handempty.

CTR by Example 23

-

Representing STRIPS in Transaction Logic (cont’d)

A planning query: Stack ¢ on d and b on c.

? — (achieveOn(b, ¢) | achieveOn(c,d)) ® on(b, c) ® on(c, d).
Finds a solution when one exists

e STRIPS was not based on a logic, so they had to develop an

execution mechanism

e The original STRIPS was not complete. Was made complete

after a series of papers

e Using an appropriate logic makes the whole problem trivial

N

~

/

CTR by Example

24

