
©IBM
4/03 Curbera, Leymann, Khalaf

BPEL4WS
(Business Process Execution
Language for Web Services)
Francisco Curbera, Frank Leymann,

Rania Khalaf
IBM

©IBM
4/03 Curbera, Leymann, Khalaf

Business Process Execution Language

• BPEL4WS enables:
– Defining business processes as coordinated sets of Web service

interactions.
– Define both abstract and executable processes.

• Abstract processes are for e-commerce specifications.
• Executable processes provide a model to integrating enterprise applications.

– BPEL enables the creation of compositions of Web services
• Composition based on abstract descriptions

• Where it comes from:
– Strong roots in traditional flow models.
– Plus many concepts from structured programming languages.
– All laid on top of WSDL and core XML specifications.
– Merges WSFL and XLANG concepts.

©IBM
4/03 Curbera, Leymann, Khalaf

Algebraic/Calculus Approach To Flows

• Collection of „elementary“ activities
–
– RPC, wait, send,...

• Collection of „complex“ activities
–
– Sequence, Parallel, Branch, Loop,...
– Have other activities as parameters

• Elementary as well as complex activities allowed

•

},...,{ n1 αα=Α

},...,{ m1 ωω=Ω

)))),),,(((,),,(,(1711513232317123 ααααωωωαααωαω

©IBM
4/03 Curbera, Leymann, Khalaf

Algebraic Flows Representation

SEQ(α2, BCH(α7, α1), α3, PAR(SEQ (PAR (α13, α5), α11), α17)))

Sequence

α2

Branch

α7 α1 α3

Parallel

Parallel

α13 α5 α11 α17

Sequence

©IBM
4/03 Curbera, Leymann, Khalaf

And As Pure Graph

SEQ(α2, BCH(α7, α1), α3, PAR(SEQ (PAR (α13, α5), α11), α17)))

α2

α7 α1

α3

α13 α5

α11

α17

p Õ p

true
true

true

©IBM
4/03 Curbera, Leymann, Khalaf

Finally: A “Non-Algebraic“ Graph
α2

p Õ p

α7 α1

α3

α13 α5 α17

α11

©IBM
4/03 Curbera, Leymann, Khalaf

Structure of a BPEL4WS Process

<process ...>

<partners> ... </partners>
<!-- Web services the process interacts with -->

<variables> ... </variables>
<!– Data used by the process -->

<correlationSets> ... </correlationSets>
<!– Used to support asynchronous interactions -->

<faultHandlers> ... </faultHandlers>
<!–Alternate execution path to deal with faulty conditions -->

<compensationHandlers> ... </compensationHandlers>
<!–Code to execute when “undoing” an action -->

<eventHandlers> ... </eventHandlers>
<!–Code for handling events-->

(activities)*
<!– What the process actually does -->

</process>

©IBM
4/03 Curbera, Leymann, Khalaf

Traditional Flow Models

Flow of data is
explicitly modeled
through data links.

Control links define
execution flow as a
directed acyclic graph

Activities represent
units of processing.

Activities are
mapped to
application
invocations or
human actions

©IBM
4/03 Curbera, Leymann, Khalaf

BPEL and WSDL Partners

Partner B

Process

WSDL

Partner A

WSDL A

©IBM
4/03 Curbera, Leymann, Khalaf

BPEL and WSDL Partners

Partner B

Service Link Type

Partner A

WSDL A

©IBM
4/03 Curbera, Leymann, Khalaf

Partner Definitions and Links

<partner name=“...” serviceLinkType=“...”
partnerRole=“...” myRole=“...”/>

<!– A partner is accessed over a WS “channel”, defined by
a service link type -->

<serviceLinkType name=“...">
<role name=“...">

<portType name=“..."/>*
</role>
<role name=“...">

<portType name=“...”/>*
</role>

</serviceLinkType>
<!– A SLT defines two roles and the portTypes that each role needs to

support -->

©IBM
4/03 Curbera, Leymann, Khalaf

BPEL Data Model

Assignment
activities move
data around.

scoped variables typed as
WSDL messages

Activities input/
output is kept in
scoped variables.

<variable name=“...” message=“...”/>*

©IBM
4/03 Curbera, Leymann, Khalaf

BPEL Basic Activities

<invoke partner=“...” portType=“...” operation=“...”
inputVariable=“...” [outputVariable=“...”]/>

<!-- process invokes an operation on a partner: -->

<receive partner=“...” portType=“...” operation=“...”
variable =“...” [createInstance=“...”]/>

<!-- process receives invocation from a partner: -->
<reply partner=“...” portType=“...” operation=“...”

variable =“...”/>
<!-- process send reply message in partner invocation: -->

<assign>
<copy>

<from variable=“...”/> <to variable=“...”/>
</copy>+

</assign>
<!– Data assignment between variables: -->

©IBM
4/03 Curbera, Leymann, Khalaf

BPEL Composition of Web Services

Component A

A’s WSDL

Component B

Service Link Type

B’s WSDL

Process
WSDL

©IBM
4/03 Curbera, Leymann, Khalaf

More Basic Activities

<throw faultName=“..." faultvariable=“...“/>
<!-- process detects processing error and switches into fault
processing mode -->

<terminate/>
<!– pull the plug -->

<wait for=“...”? until=“...”?/>
<!-- process execution stops for a specified amount of time-->

<empty>
<!– Do nothing; a convenience element -->

©IBM
4/03 Curbera, Leymann, Khalaf

BPEL Structured Activities

• Structured activities
<sequence>

<!– execute activities sequentially-->
<flow>

<!– execute activities in parallel-->
<while>

<!– iterate execution of activities until condition
is violated-->

<pick>
<!– several event activities (receive message, timer event) scheduled for
execution in parallel; first one is selected and corresponding code executed. -->

• Links
<link ...>

<!– defines a control dependency between a
source activity and a target -->

©IBM
4/03 Curbera, Leymann, Khalaf

Nesting Structured Activities. Example

<sequence>
<receive .../>
<flow>

<sequence>
<invoke .../>
<while ... >

<assign> ... </assign>
</while>

</sequence>
<sequence>

<receive .../>
<invoke ... >

</sequence>
</flow>
<reply>

</sequence>

Flow
Seq Seq

Seq

While

©IBM
4/03 Curbera, Leymann, Khalaf

Graph-oriented Authoring Style

<flow>
receive

assign

a<10000 a>=10000

risk=“high”

risk=“low”

flow

invokeinvoke

reply

riskAssessmentPT loanApprovalPT

loan
assessor
loan

assessor
loan

approver
loan

approver

1. Customer asks for a loan, giving name and amount info.
Two services are involved:
• A risk assessor which can approve the loan if the risk is low
• A loan approver which checks the name and decides whether to approve the loan.

2. The reply goes back to the customer.

©IBM
4/03 Curbera, Leymann, Khalaf

“Structured” Authoring Style

Assign
‘success’ Reply

seller
Reply
buyerReceive

seller

Receive
buyer

flow

switch
sequence

case: buyer $ <= seller $

otherwise:
Assign
‘failure’

©IBM
4/03 Curbera, Leymann, Khalaf

BPEL Handlers and Scopes

Scope
Fault Handler

Compensation
Handler

Event Handler

A scope is a set of (basic or
structured) activities.

Each scope can have three
types of handlers
associated:

• Fault handlers. Many
can be attached, for
different fault types.

• Compensation
handlers. A single
compensation handler
per scope.

• Event Handlers. Many
can be attached, for
different message types
or alarms

©IBM
4/03 Curbera, Leymann, Khalaf

Fault and Compensation Handlers

• A compensation handler is used to reverse the work performed by an
already completed scope

– A compensation handler can only be invoked by the fault handler or
compensation handler of its immediate enclosing scope

• A fault handler defines alternate execution paths when a fault occurs
within the scope.

• Typical scenario:
1. Fault is thrown (retuned by invoke or explicitly by process)
2. Execution of scope is terminated
3. Appropriate fault handler located (with usual propagation semantics)
4. Main execution is compensated to “undo” business effects of unfinished

work.

©IBM
4/03 Curbera, Leymann, Khalaf

Fault Handling

process

flow
scope&

!

FH
process

flow
scope

&

!

FH

©IBM
4/03 Curbera, Leymann, Khalaf

Compensation Example

process
flow

scope
&

! completed
scope

FH

CH

For compensation
handler activities,
variable data is as it
was upon scope
completion

©IBM
4/03 Curbera, Leymann, Khalaf

Event Handlers

• onMessage:
– As long as a scope is active, messages received that match

the handler info trigger the handler to run
– The handler runs as many times as matching messages

arrive and the scope is active.

• onAlarm:
– More than one may be defined and when the time

designated arrives the associated handler runs as long as
the scope is still active

• No links can cross the boundaries of these handlers
from/into the main flow.

©IBM
4/03 Curbera, Leymann, Khalaf

What is Correlation?

• BPEL4WS can model many types of interactions:
– simple stateless interactions
– Stateful, long running, asynchronous interactions.

• Correlation sets (CSs) provide support for the latter:
– CSs represent the data that is used to maintain the state of the interaction

(a “conversation”).
– At the process end of the interaction, CSs allow incoming messages to

reach the right process instance.
• What is a correlation set?

– A set of business data fields that capture the state of the interaction
(“correlating business data”). For example: a “purchase order number”, a
“customer id”, etc.

– Each set is initialized once per pass through scope
– Its values do not change in the course of the interaction.

©IBM
4/03 Curbera, Leymann, Khalaf

Defining Correlation Sets

<correlationSet name=“...” properties=“...”/>
<!– A CS is a named set of properties. Properties are defined as WSDL
extensibility elements: -->

<bpws:property name=“..." type=“..."/>
<!– A property has a simple XSD type and a global name (Qname) -->

<bpws:propertyAlias propertyName=“..."
messageType=“..." part=“..."
query=“..."/>

<!– A property is “mapped” to a field in a WSDL message type. The
property can thus be found in the messages actually exchanged.
Typically a property will be mapped to several different message types
and carried on many interactions, across operations and portTypes -->

©IBM
4/03 Curbera, Leymann, Khalaf

Using Correlation

<receive partner=“...” operation=“...” portType=“...”
variable=“...”>

<correlations>
<correlation set="PurchaseOrder"

initiate="yes“/>
</correlations>

</receive>

<!– An input or output operation identifies which correlation sets apply
to the messages received or sent. That CS will be used to assure that
the message is related to the appropriate stateful interaction.
<!– A CS is initialized once in an interaction where the set appears with
the “initiate” attribute set to “yes”. Its value may never be changed
afterward in the same run of the scope -->

©IBM
4/03 Curbera, Leymann, Khalaf

Multiple Start Correlation
C2C1 M1

m11 m12 ID
M2

m21 m22 ID

BA M2M1

C

D EM1 M2

©IBM
4/03 Curbera, Leymann, Khalaf

BPEL4WS Status

• Submitted to OASIS.
• V1.0 Published August 10, 2002 by BEA, IBM, and

Microsoft.
• V1.1 Published April 2003 by BEA, IBM, Microsoft,

SAP, and Siebel Systems.
• Several Java implementations available.

©IBM
4/03 Curbera, Leymann, Khalaf

Resources

• BPEL4WS 1.1:
– http://www-

106.ibm.com/developerworks/webservices/library/ws-bpel/

• BPWS4J Java Implementations:
– http://www.alphaworks.ibm.com/tech/bpws4j
– http://www.collaxa.com/

• developerWorks articles on BPEL:
– http://www-106.ibm.com/developerworks/library/ws-

bpelcol.html

http://www-106.ibm.com/developerworks/library/ws-bpelcol.html
http://www-106.ibm.com/developerworks/library/ws-bpelcol.html
http://www-106.ibm.com/developerworks/library/ws-bpelcol.html
http://www-106.ibm.com/developerworks/library/ws-bpelcol.html

	BPEL4WS (Business Process Execution Language for Web Services)
	Business Process Execution Language
	Algebraic/Calculus Approach To Flows
	Algebraic Flows Representation
	And As Pure Graph
	Finally: A “Non-Algebraic“ Graph
	Structure of a BPEL4WS Process
	Traditional Flow Models
	BPEL and WSDL Partners
	BPEL and WSDL Partners
	Partner Definitions and Links
	BPEL Data Model
	BPEL Basic Activities
	BPEL Composition of Web Services
	More Basic Activities
	BPEL Structured Activities
	Nesting Structured Activities. Example
	Graph-oriented Authoring Style
	“Structured” Authoring Style
	BPEL Handlers and Scopes
	Fault and Compensation Handlers
	Fault Handling
	Compensation Example
	Event Handlers
	What is Correlation?
	Defining Correlation Sets
	Using Correlation
	Multiple Start Correlation
	BPEL4WS Status
	Resources

