
Web Services Choreography
and

Process Algebra
29th April 2004

Steve Ross-Talbot
Chief Scientist, Enigmatec Corporation Ltd
Chair W3C Web Services Activity
Co-chair W3C Web Services Choreography

mailto:steve@enigmatec.net
http://www.enigmatec.net/
http://www.w3c.org/2002/ws/cg/
http://www.w3c.org/2002/ws/chor/


Agenda
• Orchestration vs Choreography
• WS-BPEL
• WS-CDL
• Underpinnings
• Status
• Q&A



Orchestration vs Choreography
• Consider a dance with more than one dancer.
• Each dancer has a set of steps that they will 

perform. They orchestrate their own steps because 
they are in complete control of their domain (their 
body).

• A choreographer ensures that the steps all of the 
dancers make is according to some overall 
scheme. We call this a choreography

• The dancers have a single view point of the dance.
• The choreography has a multi-party or global view 

point of the dance.



Orchestration vs Choreography
• Orchestration is about describing and 

executing a single view point model.
• Choreography is about describing and 

guiding a global model.
• You can derive the single view point model 

from the global model by projecting based 
on participant.



WS-BPEL and WS-CDL
• WS-BPEL

– Orchestration implies a centralized control 
mechanism.

• WS-CDL
– Choreography has no centralized control. Instead 

control is shared between domains.



Orchestration of Web Services
• The Oasis WS-BPEL TC
• Summary: Orchestration of web services and recursive 

composition thereof.
• Style: Scoped programming language (BPEL) with 

behavioural interfaces (Abstract BPEL).
• Uses: Orchestration of Web Services in a single domain of 

control (i.e. order flow within institution).
• Status: Currently X issues to resolve and based on 

WSDL1.1 and some proprietary specs. Due to deliver Q4.
• Issues: Licensing. Based on some proprietary 

specifications



WS-BPEL
• Is a Web Service

– Runtime semantics
– Centralised orchestration

• Abstract
– Defines end-point protocols

• Executable
– Executes the necessary WSDL calls effecting message 

exchange between services
• Benefits

– Higher reuse of WSDL collateral



WS-BPEL
• Sequence,
• Fork,
• Join,
• Parallel threads,
• Computation (Turing Complete)



WS-BPEL - Problems
• Centralised execution
• Lack of formal semantics
• Non-scalable (requires the concept of dual 

connectivity)
• Non-collaborative



Choreographing Web Services
• W3C Web Services Choreography Working Group
• Summary: Describing peer to peer interaction in a global 

model by means of a CDL
• Style: Formalized description of external observable 

behavior across domains
• Use for: Modeling cross domain protocols, protocol 

enforcement, skeletal code generation (i.e. for FIX)
• Status: Requirements document formally published, Model 

Overview document published to mailing list. Due to 
deliver end 2004.



What is a Choreography
• WS-Choreography concerns the collaboration protocols of 

cooperating Web Service participants 
– WS act as peers
– WS interact in long-lived, stateful & coordinated fashion 

• A WS-Choreography description is a multi-participant 
contract that describes, from a Global Viewpoint, the 
common observable behavior of the collaborating WS 
participants

• WS-CDL is a language in which such a contract is 
specified
– Standardization underway in the W3C Choreography WG



Using a WS-CDL

• promote a common understanding 
between WS participants; 

• automatically guarantee conformance; 
• ensure interoperability; 
• increase robustness; 
• generate code skeletons.



Benefits of a WS-CDL

• more robust Web Services to be constructed; 
• enable more effective interoperability of Web 

Services through behavioral multi-party contracts, 
which are choreography descriptions; 

• reduce the cost of implementing Web Services by 
ensuring conformance to expected behaviour; 

• increase the utility of Web Services as they will be 
able to be shown to meet contractual behavior.



Overview of WS-CDL
• Interactions
• Channels
• Participants
• Roles
• State



WS-CDL Approach
• Simple contract-like mechanisms are exhibited in the 

literature for capturing
– Deadlock-freedom (Kobayashi, 99, 00)
– Liveness (Kobayashi, 01; Yoshida, et al, 02)
– Security (Abadi et al; Cardelli and Gordon; Berger, 

Honda, Yoshida)
– Resource management (Tofte; Kobayashi; Gordon and 

Dal Zillio; Yoshida, et al)
• A contract language that guaranteed even basic versions of 

these properties (at the compatibility level) then that would 
be a significant advance over the state of the art.



WS-CDL Approach
This work needs to be carried out using formal basis. To the 
extent possible, technical design deliberations can and should 
be a matter of calculation.

Mobile process calculi provide a natural candidate.

Web service 
Implementation

Process

Does roughly 
what client wants 
it to do
Contract

Bisimulation
‘approximation’

Behaviorial type



Why process calculi?
Model Completeness Compositionality Parallelism Resources

Turing 
Machines

Lambda

Petri Nets

CCS

π



Global Models



Global Models



Global Models



WS-CDL Global Models

• A sequential process
Client(open,close,request,reply) = 

open.request1.reply1.request2.reply2.close.0

Clientopen

close

request

reply



WS-CDL Global Models

• A repetitive process
Client(open,close,request,reply) = 

open.request1.reply1.request2.reply2.close.Client(open,close,re
quest,reply)

Clientopen

close

request

reply



WS-CDL Global Models
• A process with choices to make

IdleServer(o,req,rep,c) = 
o.BusyServer(o,req,rep,close)

BusyServer(o,req,rep,c) =
req.rep.BusyServer(o,req,rep,c) +

c.IdleServer(o,req,rep,c)

IdleServer
open BusyServer

close

request

reply



WS-CDL Global Model
• Communication, Concurrency and Replication

SYSTEM = (!Client | IdleServer)

Clienti | IdleServer
Clienti | BusyServer
Clientj | IdleServer
Clientj | BusyServer
…..

When Clienti has 
started an exchange 
with IdleServer

No other Client can 
then communicate 
with the server

Until Clienti has 
finished and the 
server is once again 
Idle



WS-CDL and the pi-calculus
Operation Notation Meaning
Prefix π.P Sequence

Action a(y), a(y) Communication

Summation a(y).P + b(x).Q
∑ πi(Pi

Choice

Recursion P={…..}.P Repetition

Replication !P Repetition

Composition P | Q Concurrency

Restriction (vx)P Encapsulation

Collapse send and receive 
into an 

interact on channels



WS-CDL and the pi-calculus
• Static checking for livelock, deadlock and 

leaks
– Session types and causality

• Robust behavioral type system
– Session types



WS-CDL - Status
• Where are we today?
• Working Draft V2
• Looking for comments
• Lots of work with vertical standards
• Looking to last call end Q404



WS-CDL Summary
• Global model

– Ensured conformance
• Description language

– Not executable
• Tools

– Generators for end points
– Advanced typing

• Status
– Moving for last call end of Q404



References
• WS-CDL Working Draft
• WS-CDL Overview
• BPEL4WS 1.1
• Enigmatec


	Web Services ChoreographyandProcess Algebra
	Agenda
	Orchestration vs Choreography
	Orchestration vs Choreography
	WS-BPEL and WS-CDL
	Orchestration of Web Services
	WS-BPEL
	WS-BPEL
	WS-BPEL - Problems
	Choreographing Web Services
	What is a Choreography
	Using a WS-CDL
	Benefits of a WS-CDL
	Overview of WS-CDL
	WS-CDL Approach
	WS-CDL Approach
	Why process calculi?
	Global Models
	Global Models
	Global Models
	WS-CDL Global Models
	WS-CDL Global Models
	WS-CDL Global Models
	WS-CDL Global Model
	WS-CDL and the pi-calculus
	WS-CDL and the pi-calculus
	WS-CDL - Status
	WS-CDL Summary
	References

