
Automatic Composition of e-Services:
The “Roman” way

Daniela Berardi
Dipartimento di Informatica e Sistemistica

Università di Roma “La Sapienza”
berardi@dis.uniroma1.it

http://www.dis.uniroma1.it/~berardi/

Daniela BerardiDaniela Berardi Automatic composition of Automatic composition of ee--ServicesServices 2

Overview

• Activity based model: the “Roman” approach
• Composition results in the “Roman” model
• Message based model
• Activity vs Message based model
• Embedding Activity based model into SitCalc
• Embedding Activity based model into PSL

Daniela BerardiDaniela Berardi Automatic composition of Automatic composition of ee--ServicesServices 3

e-Services and Community of e-Services:
The Model used by “Roman” Results

• An e-Service is an interactive program that exports its behavior
in terms of an abstract description

• A client selects and interacts with it according to the description
exported

• A community of e-Services is:
– a set of e-Services …
– … that share implicitly a common understanding on a common set of

actions and export their behavior using this common set of actions

• A client specifies needs as e-Service behavior using the common
set of actions of the community

Daniela BerardiDaniela Berardi Automatic composition of Automatic composition of ee--ServicesServices 4

e-Service Exports its Behavior …

Many possible ways. In this talk…

• Behavior modeled by finite state machines
core of state chart, UML state-transition diagram, etc.

– in our FSMs, each transaction corresponds to an action (e.g.,
search-by author-and-select, search-by title-and-select, listen-
the-selected-song, ...)

• In fact using a FSM we compactly describe all possible sequences
of deterministic (atomic) actions: tree of all possible sequences of
actions

• Data produced by actions not explicitly modeled
data are used by the client to choose next action

Daniela BerardiDaniela Berardi Automatic composition of Automatic composition of ee--ServicesServices 5

e-Service as Execution Tree

S0
a b

r r

a b a b

r r r r

......

b

r
S0

a

Execution tree
(obtained by FSM unfolding)

Required behavior represented as a
FSM

a: “search by author (and select)”
b: “search by title (and select)”
r: “listen (the selected song)”

Daniela BerardiDaniela Berardi Automatic composition of Automatic composition of ee--ServicesServices 6

e-Service Composition in the “Roman Framework”

•• Community C Community C
of of ee--Services Services
(expressed as (expressed as FSMsFSMs)

Given:Given:
a

r
S1

b

r
S2

)

••Target Target ee--Service SService S0 0
(again expressed as FSM)

a

r
S0

b

(again expressed as FSM)

Find:Find:
•• new FSM new FSM ee--Service SService S’ (delegator)::
-- new alphabet = actions x (sets of service new alphabet = actions x (sets of service
identifiers) identifiers)

-- “accepts” same language as S“accepts” same language as S00

-- For each accepting run of S’ on word w, and For each accepting run of S’ on word w, and
for each S in C, “projection” of this run onto for each S in C, “projection” of this run onto
moves of S is an accepting computation for Smoves of S is an accepting computation for S

r,2r,1
a,1 b,2

S’

Daniela BerardiDaniela Berardi Automatic composition of Automatic composition of ee--ServicesServices 7

Key Idea for Finding Composition:
Exploit Description Logics (DLs)

• Description Logics:
– represent knowledge in terms of classes and relationships

between classes
– equipped with decidable reasoning

• Interesting properties:
– Tree model property
– Small model property
– EXPTIME decidability

Daniela BerardiDaniela Berardi Automatic composition of Automatic composition of ee--ServicesServices 8

Results on Automatically Building e-Service Composition

DL encoding of DL encoding of
target target ee--ServiceService

DL Knowledge
Base:

∆0

∆i

∆aux

∆Init

e-Service
composition

Check
satisfiability

(and
build a
model)

r,1 r,2
a,1 b,2

DL encoding of DL encoding of
ii--thth component component
ee--ServiceService

Initially all Initially all ee--
Services are in Services are in
their initial statestheir initial states

DL additional DL additional
domaindomain--
independent independent
conditionsconditions

EXPTIME

Daniela BerardiDaniela Berardi Automatic composition of Automatic composition of ee--ServicesServices 9

Results

Thm 1: Composition exists iff DL Knowledge Base satisfiable
From composition labeling of the target e-Service one can build a tree model for

the Knowledge Base, and vice-versa
Cor 1: Composition existence of e-Services, expressible as FSMs,

is decidable in EXPTIME

Thm 2: If composition exists then finite state composition exists.
From a small model of a DL Knowledge Base,

one can build a finite state composition
Cor 2: Finite state composition existence of e-Services, expressible

as FSMs, is decidable in EXPTIME

⇒ Building finite state composition can be done in
EXPTIME

Daniela BerardiDaniela Berardi Automatic composition of Automatic composition of ee--ServicesServices 10

Message Based Model
ec-Schema:
• finite set of abstract peers (e-Services)

– peers can be implemented as FSM with input/output
– each peer has a (bounded) queue
⇒ asynchronous communication between peers

• finite set of channels
– i.e., {<sender, receiver, message_type>}

• finite set of incoming and outgoing messages over some
alphabet Σ
– input messages: ?a, a ∈ Σ
– output messages !a, a ∈ Σ
– As technical simplification in theoretical model, each symbol “a”

encodes a triple <sender,receiver,message-type>
• Conversation language: sequence of messages exchanged

between peers
Model is peer-to-peer, but can restrict to mediated by assuming
“hub-and-spoke” connection graph. (I.e., one peer acts as the
mediator)

Daniela BerardiDaniela Berardi Automatic composition of Automatic composition of ee--ServicesServices 11

E-Composition Schema
• An E-C schema specifies the infrastructure of composition
• Assume finite domains ⇒ can model parameters

authorize
ok

bi
ll 2

pa
ym

en
t 2

order
1

receipt1

order
2

receipt2 paym
ent 1

bill 1

store bank

supplier1 supplier2

Daniela BerardiDaniela Berardi Automatic composition of Automatic composition of ee--ServicesServices 12

Composition Infrastructure

order1

ok

receipt1

order2

receipt2

bi
ll 2

pa
ym

en
t 2

bill 1
paym

ent 1

authorize
store bank

supplier1 supplier2

• Hub-and-spoke (centralized control)

a
k’

r
o

b2

p2

r2
o2

r1

o1

b1
p1

k
a’

b
p

store

supplier1 supplier2

bank

mediator

• Peer-to-peer (distributed control)

Daniela BerardiDaniela Berardi Automatic composition of Automatic composition of ee--ServicesServices 13

Peer Synthesis Statement and Results

• Problem statement
– Given: ec-schema and LTL formula ϕ
– Create: a FSM for each peer so that ϕ is satisfied
– Note: not a composition problem, because this result is creating

peers, not selecting them from a pre-existing “UDDI”

• Synthesis results for Mealy implementations with bounded
queues
– Mealy peer synthesis: decidable

• Propositional LTL description ⇒ PSPACE

• (Also, results contrasting bounded vs. unbounded message
queues)

“Roman” Activity Based Composition Result
vs Message Based Synthesis Result

• Activity based Model:
– behavior modeled as FSM, with

transitions labeled by actions
– client/server model: “active” client:

s/he selects from a set of choices
presented by e-service

• Result
– Start with community of activity-

based FSMs (e-services)
– FMSs define constraint on legal

sequence of actions executed by
each peer

– given a branching time spec. Ψ of
global behavior and “constrained”
peers, synthesize a delegator

– peers communicate only with
delegator

– determinism only (for the moment)

• Message based Model:
– behavior modeled as FSM, with

transitions labeled by input/output
messages

– peer-to-peer model; no notion
corresponding to client in activity model

• Result
– Start with “ec-schema” which establishes

topology for message-passing
– no constraint on legal sequences of

actions executed by each abstract peer
– given a LTL spec.Φ of global behavior

and “ec-schema”, synthesize peers such
that Φ is realized

– peer-to-peer communication
– non determinism over messages (i.e.,

same message labeling different transition
from same state)

Daniela BerardiDaniela Berardi Automatic composition of Automatic composition of ee--ServicesServices 14

Daniela BerardiDaniela Berardi Automatic composition of Automatic composition of ee--ServicesServices 15

“Roman” Activity Based vs Message Based

• “Roman” Activity based and Message based are
complementary approaches:
– Can merge them?
– How?

• (other) “Roman” Activity based future work:
– is our algorithm EXPTIME-hard?
– currently we are working on a DL based prototype

system that implements our composition algorithm
– also working on notion of “k-look-ahead”

compositions - gives more flexibility than first Roman
results

– add non determinism
– data (i.e., parameters of actions)

Daniela BerardiDaniela Berardi Automatic composition of Automatic composition of ee--ServicesServices 16

Summary: The “Roman” Activity Based Model
for e-Services

Client

Service: on-line music store

interacts

choice points: the e-Service
makes always the client
decide what to do next (in
principle, all states can be
choice points).

search
mp3

select
mp3

listen

add to
cart

buy

search
mp3

select
mp3

states at which client can stop

states at which client cannot stop

Daniela BerardiDaniela Berardi Automatic composition of Automatic composition of ee--ServicesServices 17

Summary: Automatic e-Service composition in
the “Roman” Framework

But: what if

• there does not exist an e-Service on-line music store ?

• the only available e-Services are jukebox and bank?

Community
of e-Services: select

mp3
search
mp3

listen

search mp3

buyadd to
cart

add to cart
jukebox bank

Daniela BerardiDaniela Berardi Automatic composition of Automatic composition of ee--ServicesServices 18

Summary: Automatic e-Service composition in
the “Roman” Framework (cont.d)

Community of e-Services
(available e-Services):
jukebox, bank

Target e-Service (client request):
on-line music store

e-Service Automatic
Composition Engine

based on based on
tableau tableau
techniques techniques
for DLsfor DLs

Domain indep.
constraints

search
mp3

select
mp3

listen

add to
cart

buy

search mp3select mp3

jukebox

jukebox

jukebox

jukeboxjukebox

bank
bank

Delegator (delegates
each action of target e-
Service to e-Service(s)
in the community):

Daniela BerardiDaniela Berardi Automatic composition of Automatic composition of ee--ServicesServices 19

Situation Calculus Encoding of Roman Model -- Idea

• Each e-Service i as Reiter’s Basic Action Theory Γi:
– each action as a Situation Calculus action
– each state of FSM is a fluent
– special fluent Final to indicate situation when e-Service execution can stop.

⇒ In Γi we have complete information on the initial situation and hence on the
whole theory.

• e-Service composition:
– represent which e-Services (in the community) are executed, when an

action of the target e-Service is performed, by predicates Stepi(a, s),
denoting that e-Service i executes action a in situation s.

⇒ Situation Calculus Theory (but not basic)
⇒ Incomplete information over Stepi(a, s)

– rename Poss to Possi , rename Final to Finali

– suitably modify the successor axioms to cope with Stepi(a, s)

Daniela BerardiDaniela Berardi Automatic composition of Automatic composition of ee--ServicesServices 20

Sit Calc Encoding -- Details

• Target e-Service E0 = (Σ, Q0, q0
0, δ0, F0)

(Reiter Basic Action Theory)
– F q00 (S0) initial situation
– ∀s. Fq(s) ⊃ ¬Fq’ (s) for all pairs of distinct states q, q’ in E0

e-Service states are pair-wise disjoint

– ∀s. Poss(a, s) ≡ ∨q st δ0(q, a) is defined Fq (s)

∀s ∀α. Fq’ (do(α,s)) ≡ ∨a, q, st q’=δ0(q, a) (α = a ∧ Fq(s)) ∨

(Fq’(s) ∧ ∧ b st δ0(q',b) is defined α≠ b)
for each q'=δ0(q,a)

target e-Service can do an a-transition going to state q’

– ∀s. Final (s) ≡ ∨q ∈ F0 Fq (s)
denotes target e-Service final states

Daniela BerardiDaniela Berardi Automatic composition of Automatic composition of ee--ServicesServices 21

Sit Calc Encoding -- Details (cont.d)

• Community e-Services Ei = (Σ, Qi, q0
i, δi, Fi)

– Fqi0 (S0
i) initial situation

–∀s. Fq(s) ⊃ ¬Fq ’(s) for all pairs of distinct states q, q’ in Ei
e-Service states are pair-wise disjoint

–∀s. Possi(a, s) ≡ ∨ q st δi(q, a) is defined Fq (s)
∀s ∀α. Fq’ (do(α,s)) ≡

(∨ a, q, st q’=δi(q, a) (α = a ∧ Fq(s) ∧ Stepi(α, s))) ∨
(¬ Stepi(α, s) ∧ Fq’(s))

for each q’=δi(q, a)
if e-Service moved then new state, otherwise old state

–∀s. Finali (s) ≡ ∨q ∈ F i Fq (s)
denotes community e-Service final states

Daniela BerardiDaniela Berardi Automatic composition of Automatic composition of ee--ServicesServices 22

SitCalc Encoding -- Details (cont.d)

• Foundational, domain independent axioms:

– ∀s,a. Poss(a,s) ∧ ¬ Final(s) → ∨i=1..n Stepi (a,s) ∧ Possi(a,s)
for each action a

at least one of the community e-Services must move at each step

– ∀s. Final(s) → ∧i=1..n Finali (s)

when target e-Service is final all comm. e-Services are final

– ∧i=0..n F qi0 (S0
i)

in the initial situation all e-Services are in their initial state

Daniela BerardiDaniela Berardi Automatic composition of Automatic composition of ee--ServicesServices 23

PSL Encoding of Roman Model -- Idea

• Based on Rick Hull and Michael Gruninger encoding of
message based model in PSL

• Basic idea to model an e-Service:
– fluents to denote:

• initial situation (Init)
• states of FSM (Fq),

• final states (Final),

– one activity for each action
.

• Component e-Services:
– rename poss to possi , rename Final to Finali

– fluent Stepai to denote which component e-Service “moves”

Daniela BerardiDaniela Berardi Automatic composition of Automatic composition of ee--ServicesServices 24

PSL Encoding of Roman Model -- Idea

• Based on Rick Hull and Michael Gruninger encoding of
message based model in PSL

• Basic idea to model an e-Service:
– fluents to denote:

• initial situation (Init)
• states of FSM (Fq),

• final states (Final),

– one activity for each action
.

• Component e-Services:
– rename poss to possi , rename Final to Finali

– fluent Stepai to denote which component e-Service “moves”

very
similar to
Sit Calc !

Daniela BerardiDaniela Berardi Automatic composition of Automatic composition of ee--ServicesServices 25

PSL Encoding -- Details

• Target e-Service E0 = (Σ, Q0, q0
0, δ0, F0)

– ∀o.prior (Fq ⊃ ¬Fq’ , o)
for all pairs of distinct states q, q’ in E0
e-Service states are pair-wise disjoint

– ∀o. holds(Fq ,o) ⊃ poss(a, o) (prec)
∀o. occurrence_of(o ,a) ∧ prior(Fq , o) ⊃ holds(Fq ’, o) (eff)

for each q'=δ0(q,a)
target e-Service can do an a-transition going to state q’

– ∀o. holds(Fq ,o) ∧ poss(a, o) ⊃ false for each δ0(q,a) undef.

target e-Service cannot do an a-transition

– Final ≡ ∨q ∈ F0 Fq
denotes target e-Service final states

Daniela BerardiDaniela Berardi Automatic composition of Automatic composition of ee--ServicesServices 26

PSL Encoding -- Details

• Target e-Service E0 = (Σ, Q0, q0
0, δ0, F0)

– ∀o.prior (Fq ⊃ ¬Fq’ , o)

– ∀o. holds(Fq ,o) ⊃ poss(a, o) (prec)
∀o. occurrence_of(o ,a) ∧ prior(Fq , o) ⊃ holds(Fq ’, o) (eff)

– ∀o. holds(Fq ,o) ∧ poss(a, o) ⊃ false

– Final ≡ ∨q ∈ F0 Fq
similar to
Sit Calc !

Daniela BerardiDaniela Berardi Automatic composition of Automatic composition of ee--ServicesServices 27

PSL Encoding -- Details (cont.d)

• Community e-Services Ei = (Σ, Qi, q0
i, δi, Fi)

– ∀o.prior (Fq ⊃ ¬Fq’ , o) for all pairs of distinct states q, q’ in Ei
e-Service states are pair-wise disjoint

–∀o. holds(Fq ,o) ⊃ possi(a, o) (prec)
∀o. occurrence_of(o ,a) ∧ prior(Fq, o) ⊃ (eff)

(holds(Fq’ , o) ∧ holds(Stepia, o)) ∨ (holds(Fq, o)∧¬holds(Stepia,o))
for each q'=δi(q, a)

if e-Service moved then new state, otherwise old state
–∀o. holds(Fq ,o) ∧ possi(a, o) ⊃ false

∀o. occurrence_of(o, a) ∧ prior(Fq, o) ⊃
holds(Fq, o) ∧ ¬holds(Stepia, o) for each δi(q,a) undef.

if e-Service cannot do a, and a is performed then it did not move

– Finali ≡ ∨q ∈ Fi Fq denotes community e-Service final states

Daniela BerardiDaniela Berardi Automatic composition of Automatic composition of ee--ServicesServices 28

PSL Encoding -- Details (cont.d)

• Community e-Services Ei = (Σ, Qi, q0
i, δi, Fi)

– ∀o.prior (Fq ⊃ ¬Fq’ , o)

–∀o. holds(Fq ,o) ⊃ possi(a, o) (prec)

∀o. occurrence_of(o ,a) ∧ prior(Fq, o) ⊃ (eff)
(holds(Fq’ , o) ∧ holds(Stepia, o)) ∨ (holds(Fq, o)∧¬holds(Stepia,o))

–∀o. holds(Fq ,o) ∧ possi(a, o) ⊃ false

∀o. occurrence_of(o, a) ∧ prior(Fq, o) ⊃
holds(Fq, o) ∧ ¬holds(Stepia, o)

– Finali ≡ ∨q ∈ Fi Fq

similar to
Sit Calc !

Daniela BerardiDaniela Berardi Automatic composition of Automatic composition of ee--ServicesServices 29

PSL Encoding -- Details (cont.d)

• Additional assertions:
–∀o. poss(a, o) ∧ occurrence_of(o ,a) ⊃ ∨i=1..n stepia (o) ∧ possi(a,o)

for each action a
at least one of the community e-Services must move at each step

–∀o. prior (Final ⊃ ∧i=1..n Finali , o)
when target e-Service is final all comm. e-Services are final

–Init ≡ ∧i=0..n Fqi0
Initially all e-Services are in their initial state

Daniela BerardiDaniela Berardi Automatic composition of Automatic composition of ee--ServicesServices 30

PSL Encoding -- Details (cont.d)

• Additional assertions:
–∀o. poss(a, o) ∧ occurrence_of(o ,a) ⊃ ∨i=1..n stepia (o) ∧ possi(a,o)

–∀o. prior (Final ⊃ ∧i=1..n Finali , o)

–Init ≡ ∧i=0..n Fqi0
similar to
SIt Calc!

Daniela BerardiDaniela Berardi Automatic composition of Automatic composition of ee--ServicesServices 31

Info & Contacts

• Thesis dissertation scheduled for January 2005

Daniela Berardi

e-mail: berardi@dis.uniroma1.it

home page: http://www.dis.uniroma1.it/~berardi

address: Via Salaria, 113 (2 piano)
I-00198 Rome (Italy)

Daniela BerardiDaniela Berardi Automatic composition of Automatic composition of ee--ServicesServices 32

Further Discussion about PSL and Sit Calc
(brief discussion with Michael Gruninger)

• PSL core theory occtree equivalent to Reiter's axiomatization of
the situation trees

• PSL defines several classes of activities (e.g., markov_precond
act., etc.)
– markov_precond activities have precondition axioms of the form

equivalent to situation calculus.

In Sitcalc all activities have markov preconditions. (Same
comment for effects).

• Complex activities can be axiomatized both in PSL (core theory)
and in Sit Calc.

• Both PSL and Sit Calc can represent concurrency of activities.
• As for encoding of activity prec (and effect), PSL uses the ⊃

symbol (for markov_precond act.), whereas Sit Calc uses more
often the ≡ symbol: is this based on some deeper difference?

• ...

Back up

Daniela BerardiDaniela Berardi Automatic composition of Automatic composition of ee--ServicesServices 34

Execution tree

S0
a b

r r

a b a b

r r r r

a: “search by author (and select)”
b: “search by title (and select)”
r: “listen (the selected song)”

An execution tree

• Nodes: history (sequence) of actions
executed so far

• Root: no action yet performed
• Successor node x·a of x: action a can

be executed after the sequence of
action x

• Final nodes: the e-Service can
terminate

...

Daniela BerardiDaniela Berardi Automatic composition of Automatic composition of ee--ServicesServices 35

e-Service composition

• Added value of the community:

when a client request cannot be satisfied by any available e-
Service, it may still be possible to satisfy it by combining
“pieces” of e-Services in the community

• Two issues arise:
– support for synthesizing composition:

– automatic synthesis of a coordinating program (composition) …
– … that realizes the target e-Service (client request) …
– … by suitably coordinating available e-Services

addressed here

– support for orchestration: execution of the coordinating program
not addressed here

Daniela BerardiDaniela Berardi Automatic composition of Automatic composition of ee--ServicesServices 36

Formalizing e-Service composition

Composition:
– coordinating program …
– … that realizes the target e-Service …
– … by suitably coordinating available e-Services

⇒ Composition can be formalized as:
– a labeling of the execution tree of the target e-Service such that

…
– … each action in the execution tree is labeled by the community

e-Service that executes it …
– … and each possible sequence of actions on the target e-Service

execution tree corresponds to possible sequences of actions on
the community e-Service execution trees, suitably interleaved.

Daniela BerardiDaniela Berardi Automatic composition of Automatic composition of ee--ServicesServices 37

Example of composition

•• Community Community ee--Services Services (expressed as (expressed as FSMsFSMs))

b

r
S2

a

r
S1

••Target Target ee--Service Service (again expressed as FSM)(again expressed as FSM)

b

r
S0

a

Daniela BerardiDaniela Berardi Automatic composition of Automatic composition of ee--ServicesServices 38

Example of composition

coordinating programcoordinating program ((compositioncomposition))

b

r
S0

a

r

a b

r r

a b a b

r r r

......

a

r
S1

b

r
S2

Daniela BerardiDaniela Berardi Automatic composition of Automatic composition of ee--ServicesServices 39

Example of composition

coordinating programcoordinating program ((compositioncomposition))a

a

r
S1

b

r
S2

r

a b

r r

a b a b

r r r

b
S0 r

......

AAll ell e--Services start from their starting stateServices start from their starting state

Daniela BerardiDaniela Berardi Automatic composition of Automatic composition of ee--ServicesServices 40

Example of composition

coordinating programcoordinating program ((compositioncomposition))

a

r
S1

b

r
S2

r

a b

r r

a b a b

r r r

......

b
S0

a

r

EEach action of the targetach action of the target ee--Service is executed by at least oneService is executed by at least one of the component eof the component e--ServicesServices

Daniela BerardiDaniela Berardi Automatic composition of Automatic composition of ee--ServicesServices 41

Example of composition

coordinating programcoordinating program ((compositioncomposition))a

a

r
S1

b

r
S2

r

a b

r r

a b a b

r r r

b
S0 r

......

WWhen the target ehen the target e--Service can be left, thenService can be left, then all component eall component e--Services must be in a final Services must be in a final statestate

Daniela BerardiDaniela Berardi Automatic composition of Automatic composition of ee--ServicesServices 42

Example of composition

coordinating programcoordinating program ((compositioncomposition))a

a

r
S1

b

r
S2

r

a b

r r

a b a b

r r r

b
S0 r

......

Daniela BerardiDaniela Berardi Automatic composition of Automatic composition of ee--ServicesServices 43

Example of composition

coordinating programcoordinating program ((compositioncomposition))a

a

r
S1

b

r
S2

r

a b

r r

a b a b

r r r

b
S0 r

......

Daniela BerardiDaniela Berardi Automatic composition of Automatic composition of ee--ServicesServices 44

ALC encoding

• Target e-Service S0 = (Σ, S0, s0
0, δ0, F0)

– s v ¬s' for all pairs of distinct states in S0

e-Service states are pair-wise disjoint

– s v ∃ a.> u ∀ a.s' for each s'=δ0(s,a)
target e-Service can do an a-transition going to state s’

– s v ∀ a.⊥ for each δ0(s,a) undef.

target e-Service cannot do an a-transition
– F0 ≡ t s ∈ F0 s

denotes target e-Service final states

• …

Daniela BerardiDaniela Berardi Automatic composition of Automatic composition of ee--ServicesServices 45

ALC encoding (cont.d)

• Community e-Services Si = (Σ, Si, s0
i, δi, Fi)

– s v ¬s' for all pairs of distinct states in Si

e-Service states are pair-wise disjoint

– s v ∀ a.(movedi u s' t ¬movedi u s) for each s'=δi(s,a)
if e-Service moved then new state, otherwise old state

– s v ∀ a. (¬movedi u s) for each δi(s,a) undef.
if e-Service cannot do a, and a is performed then it did not move

– Fi ≡ t s ∈ Fi s
denotes community e-Service final states

• …

Daniela BerardiDaniela Berardi Automatic composition of Automatic composition of ee--ServicesServices 46

ALC encoding (cont.d)

• Additional assertions
– ∃ a.> v ∀ a . t i=1,…,n movedi for each action a

at least one of the community e-Services must move at each step

– F0 v u i=1,…,n Fi
when target e-Service is final all comm. e-Services are final

– Init ≡ s0
0 u ui=1....n s0

i
Initially all e-Services are in their initial state

Daniela BerardiDaniela Berardi Automatic composition of Automatic composition of ee--ServicesServices 47

DPDL encoding

Φ = Init ∧ ([u]Φ0 ∧ i=1,…,n [u]Φi∧ [u]Φaux)

Initial states of all Initial states of all
ee--ServicesServices

DPDL encoding of DPDL encoding of
ii--thth component component ee--
ServiceService

DPDL additional DPDL additional
domaindomain--
independent independent
conditionsconditions

DPDL encoding of DPDL encoding of
target target ee--ServiceService

DPDL encoding is polinomial in the size of the eDPDL encoding is polinomial in the size of the e--Service FSMsService FSMs

Daniela BerardiDaniela Berardi Automatic composition of Automatic composition of ee--ServicesServices 48

DPDL encoding

• Target e-Service S0 = (Σ, S0, s0
0, δ0, F0)

in DPDL we define Φ0 as the conjuction of:

– s → ¬s' for all pairs of distinct states in S0
e-Service states are pair-wise disjoint

– s → <a>> ∧ [a]s' for each s'=δ0(s,a)
target e-Service can do an a-transition going to state s’

– s → [a]⊥ for each δ0(s,a) undef.

target e-Service cannot do an a-transition
– F0 ≡ ∨ s ∈ F0 s

denotes target e-Service final states

• …

Daniela BerardiDaniela Berardi Automatic composition of Automatic composition of ee--ServicesServices 49

DPDL encoding (cont.d)

• Community e-Services Si = (Σ, Si, s0
i, δi, Fi)

in DPDL we define Φi as the conjuction of:

– s → ¬s' for all pairs of distinct states in Si
e-Service states are pair-wise disjoint

– s → [a](movedi ∧ s' ∨ ¬movedi ∧ s) for each s'=δi(s,a)
if e-Service moved then new state, otherwise old state

– s→ [a](¬movedi ∧ s) for each δi(s,a) undef.
if e-Service cannot do a, and a is performed then it did not move

– Fi ≡ ∨ s ∈ Fi s
denotes community e-Service final states

• …

Daniela BerardiDaniela Berardi Automatic composition of Automatic composition of ee--ServicesServices 50

DPDL encoding (cont.d)

• Additional assertions Φaux
– <a>> → [a] ∨i=1,…,n movedi for each action a

at least one of the community e-Services must move at each step

– F0 → ∧ i=1,…,n Fi
when target e-Service is final all comm. e-Services are final

– Init ≡ s0
0 ∧ i=1....n s0

i
Initially all e-Services are in their initial state

DPDL encoding: Φ = Init ∧ [u](Φ0 ∧ i=1,…,n Φi∧ Φaux)

Daniela BerardiDaniela Berardi Automatic composition of Automatic composition of ee--ServicesServices 51

Results

Thm: Composition exists iff DPDL formula Φ SAT
From composition labeling of the target e-Service one can build a

tree model of the DPDL formula and viceversa

Information on the labeling is encoded in predicates movedi

⇒ Composition existence of e-Services expressible as
FSMs is decidable in EXPTIME

Daniela BerardiDaniela Berardi Automatic composition of Automatic composition of ee--ServicesServices 52

Results on Finite State Composition

Thm: If composition exists then Mealy composition exists.
From a small model of the DPDL formula Φ,

one can build a Mealy machine

Information on the output function of the machine is encoded in
predicates movedi

⇒ Finite state composition existence of e-Services
expressible as FSMs is decidable in EXPTIME

	Automatic Composition of e-Services:The “Roman” way
	Overview
	e-Services and Community of e-Services:The Model used by “Roman” Results
	e-Service Exports its Behavior …
	e-Service as Execution Tree
	e-Service Composition in the “Roman Framework”
	Key Idea for Finding Composition: Exploit Description Logics (DLs)
	Results on Automatically Building e-Service Composition
	Results
	Message Based Model
	E-Composition Schema
	Composition Infrastructure
	Peer Synthesis Statement and Results
	“Roman” Activity Based Composition Result vs Message Based Synthesis Result
	“Roman” Activity Based vs Message Based
	Summary: The “Roman” Activity Based Model for e-Services
	Summary: Automatic e-Service composition in the “Roman” Framework
	Summary: Automatic e-Service composition in the “Roman” Framework (cont.d)
	Situation Calculus Encoding of Roman Model -- Idea
	Sit Calc Encoding -- Details
	Sit Calc Encoding -- Details (cont.d)
	SitCalc Encoding -- Details (cont.d)
	PSL Encoding of Roman Model -- Idea
	PSL Encoding of Roman Model -- Idea
	PSL Encoding -- Details
	PSL Encoding -- Details
	PSL Encoding -- Details (cont.d)
	PSL Encoding -- Details (cont.d)
	PSL Encoding -- Details (cont.d)
	PSL Encoding -- Details (cont.d)
	Info & Contacts
	Further Discussion about PSL and Sit Calc(brief discussion with Michael Gruninger)
	Back up
	Execution tree
	e-Service composition
	Formalizing e-Service composition
	Example of composition
	Example of composition
	Example of composition
	Example of composition
	Example of composition
	Example of composition
	Example of composition
	ALC encoding
	ALC encoding (cont.d)
	ALC encoding (cont.d)
	DPDL encoding
	DPDL encoding
	DPDL encoding (cont.d)
	DPDL encoding (cont.d)
	Results
	Results on Finite State Composition

