Thoughts on Message-based Behavioral Signatures vis-a-vis PSL
Michael Gruninger and Richard Hull
Draft: December 3, 2003
(Not for broad distribution)

This document describes one approach for “embedding” automata-based signature descrip-
tions of e-service compositions into PSL. In particular, the embedding is into the core PSL
theory Tdisc_state-

1 Review of model for message-based behavioral signatures

We assume a model of e-compositions as described in Hull’s PODS 2003 paper. In particular,
an ec-schema is a triple (P,C, M) of (abstract) peers, channels, and messages (or message
classes), respectively. It is assumed that each message is associated with exactly one channel.
Channels have a source and a target.

A peer is an e-service, along with a finite state automata (fsa) that serves as a (message-
based) behavioral signature, and describes the peer’s message-passing behavior, in terms of
both incoming messages (denoted ?«) and outgoing messages (denoted !c«). The fsa might
be deterministic or non-deterministic. (The nondeterminism can be used to capture the
case of conditionals based on parameter values associated with incoming messages in the
underlying e-service.)

Given an ec-schema S = (P,C, M), an implementation of S is an assignment of concrete
peers (or at least, behavioral signatures of concrete peers) to each abstract peer in P. In
normal execution of an implementation all peers start in their start states. A move involves
one peer transmitting a message to another peer (in which case the message is placed on the
queue for the receiving peer), or it involves one peer “eating” a letter from its queue.

An instantaneous description is a complete description of a stage of processing in an execution
of an implementation of an ec-schema. More formally, an instantaneous description is an n-
tuple (here n is the number of peers in the ec-schema) of form (< 01,Q1 >, ..., < 0, Qn >)
where o; denotes the “current” state of the i*" peer and); denotes the “current” contents of
the queue of the i*" peer. One can discuss executions as sequences I; - I - ... F I,,, where
each I; is an instantaneous description and F is the “moves-to” relation. An execution is
successful if it ends with each queue empty and each peer in a final state.

In this development we assume that the queue for each peer can have maximum length 2.
It is clear how to generalize this for any finite bound; it is not clear at this point how to
support unbounded queue lengths.

2 Mapping of behavioral signature model into PSL

The basic idea here is to create a family of fluents that can be used to describe instantaneous
descriptions of an implementation of an ec-schema, establish some logical expressions that
capture the properties of an instantaneous description, and then to encode the family of
valid moves of the implementation into logical expressions.

2.1 A family of actions

Associated with each peer I' we have the following actions

1. T'_eats_a if there is some transition in I' labeled by ?a.

2. I'_sends_a if there is some transition in I' labeled by !a.

Note: One could also represent these as parameterized actions, e.g., to use I'_eats(.), where
the possible parameter values are the input alphabet for I"'. The same comment applies to
the fluents described below.

2.2 A family of fluents

We assume a family of fluents for each (concrete) peer I'. Specifically, these are

1. T'_o, for each state o of I'. This is intended to mean that T is in state o.

2. T'i_a, for each valid input message a of I', and for ¢ € {1,2}. This is intended to mean
that the i element of s queue holds message o.

3. T_i_empty, for i € {1,2}. This is intended to mean that the 7' element of I'’s queue is
empty. This can be viewed as short-hand for Ve gy =I'i_, where R(I') denotes the
set, of messages received by I'. To this end we add the logical expressions, for i € {1, 2},

Piempty= \/ -Tip
BER(T)

4. T'_start, which is intended to mean that [is in the start state. To this end, we include
the logical expression
['start=T_0

where ¢ is the start state of I'.

5. I'_final, which is intended to mean that I' is in a final state. To this end, we include

the logical expression
I final= \/ To

c€F(T)

where F'(I') denotes the set of final states of I'

2.3 Restrictions of sets of fluents

We now include some “simple state constraints”. These will be logical expressions that
restrict valid collections of fluents to be only those corresponding to possible instantaneous
descriptions. These expressions include, for each peer T,

For each of the following expressions ¢ the actual state constraint is (Vo), prior(¢, o).

L. Voesary Lo, where S(I') is the set of states of T'.

Le., I' is in at least one state

2. /\G,TES(F) [F—G No 7é T O _'F'r]'

Le., T cannot be in two states at the same time.

3. Nogesyllio Ao # 7D =] forie {1,2}.

Le., I' cannot have 2 messages in position ¢ of its queue

4. Aoes(m) 20D Vrerm) r1r7].

Le., if there is a message in position 2 of I'’s queue, then there is a message in position
1 of that queue.

2.4 Capturing valid moves

We start by assuming that the peers are deterministic, and then indicate modifications
needed in case they are non-deterministic.

We first describe some logical expressions that will hold if for some peer I' we have or (o, 7o) =
T.

1. (A precondition)
(Vs) holds(T o, s) A holds(T'1_c, 8) D poss(T_eats_a, s).

Le., if ' is in state o and « is at the head of the queue, then it is legal for the next
occurrence to be of the action I'_eats_a.

2. (An effect)
(Vo)occurrence_of (o,T_eats_a) A prior(T o, 0) D holds(T_7,0).
Le., by the action I'_eats_a, I' will move to state 7.

3. (An effect)
(Vo)occurrence_of (o, _eats_a) Aprior(I'-2_empty, 0) D holds(I'_1_empty, o) Aholds(I'-2_empty, o)
Le., if I eats the first member of queue, and the second slot of the queue is empty,
then the both slots of the queue becomes empty.

4. (An effect)
(Vo)occurrence_of (o, _eats_a)Aprior(I'_2_3,0) D holds(I'_1_f, 0) Aholds(I" 2_empty, o)

Le., if I' eats the first member of queue and the second slot of the queue is non-empty,
then the second member of queue moves to the first place, and the second slot of the
queue becomse empty.

Note: To support non-deterministic automata, item 2 above might hold a disjunction in its
consequence.

Note: The effects given above are context-sensetive. We could also create an embedding in
which the effects are context-free. To do this, we would increase the number of activities.
Instead of corresponding simply to a transition in a peer, each activity would correspond
to a transition in a peer along with a specific manipulation of that peer’s queue. The
preconditions would now become more intricate, but the effects would not have any prior
predicates in their antecedants.

We now turn to the logical expressions that will hold if for some peer I' we have or (o, la) = 7.
We assume that the target of message « is .

1. (A precondition)
(Vs)holds(T'_o, s) A ®_2_empty D poss(I'_send_a, s)

Le., if I is in state ¢ and if ® has room on its queue, then I' can send a to ®.
2. (An effect)

(Vo)occurrence_of (o, T _send_a) A prior(I'_o, 0) A prior(®_lempty, 0) D holds(T'_T, 0) A
holds(®_1_c, 0) A holds(®_2_empty, o)

Le., if I is in o before the action I'_send_c, and if ®’s queue is empty, then [' moves
to 7 and « is stuck onto the queue of .

3. (An effect)
(Vo)occurrence_of (o, T _send_a) Aprior(I'_o, o) Aprior(®_1_4, o) Aprior(®_2_empty, 0) D
holds(T'_, 0) A holds(®_1_4,0) A holds(®_2_a, 0)

L.e., similar to previous case except starting with # in first position of ®’s queue and
second position is empty.

Note: For non-deterministic automata things are not significantly more difficult. The main
thing is that a disjunction must be introduced in each of the above rules, analogous to the
case of [' moves that “eat” a message.

2.5 Capturing valid start and halting states

The following ensures that we look only at occurrence trees whose root corresponds to the
start state of the composition. We include the following for each peer I'

1. initial(s) D prior(I' _start, s)

For a computation to be in a halting state, then each peer must be in a final state and all
queues must be empty. This can be captured by taking the conjunction of the following
expression for each peer I'.

1. holds(T'_final, s) A holds(I"_1_empty, s)

3 Some immediate questions

. Does this PSL representation make certain kinds of reasoning easier?

. Can we characterize the family of occurrance trees that correspond to embeddings of
behavioral signature descriptions of composite services?

. How can we blend the embedding given here with the embedding of DAML-S services
into PSL?

