Surface Syntax for OWL-S-PAI
* DRAFT 0.5 **
The OWL-S coalition
Edited by Drew McDermott
October 13, 2003

1 Goals

This is a proposal for a surface syntax for the emerging “processes as in-

stances” (PAI) notation for OWL-S. The formal semantics that was formerly

conjoined has been split off, and will be dealt with in a separate document.
The goals of this exercise are to

1. Provide readable surface syntax

2. Explain how it relates to the usual RDF syntax

Change history:

V. 0.5, 2003-10-13: Change 'parameterSpec’ to 'parameterInst’ to better
match the notion of process instance.
Replaced parameter IDs with attribute paramName.
Streamlined tag-binding notation in RDF syntax.
Specified convention for referring to parameters in
logical formulas.
Provided practical alternatives to -1 characters.

2 Syntax and Informal Semantics

The syntax we propose is somewhat Lisp-based, but not entirely. The main
reason to go this route is that Lisp’s concrete syntax is essentially isomorphic
to its abstract syntax, so you can view this as a placeholder for a syntax
with more infix operators and fewer parentheses.

The key concept in OWL-S is the process, which is an activity carried
out by an agent, typically a web service or a client.

A process definition is a description of a process. Processes come in
several flavors, atomic, simple, and various sorts of composite, distinguished
by their control constructs (conditional, choice, parallel, loop, etc.).

We will assume that a process starts with its control construct, or the
reserved words Atomic or Simple. So an if-then-else might look like

(If-Then-Else ...)

By convention, reserved control constructs have names starting with a cap-
ital letter.

2.1 Args, Results, Preconditions, Effects

Every process can have input and output parameters, described using fields
:args and :results. Input and output parameters may have optional
types, the OWL classes they belong to. So a simple sequence might be
described thus:

(Sequence :args (a - Integer)
-—--steps—-—-
:results (b - String))

We also capitalize the name of classes used in type declarations. Multiple
args and results can be expressed by putting more pieces into a single :args
or :results, or by having multiple :args and :results specs, or by any
convenient combination. A variant of :results is :conditional-results,
as in

(Sequence ...
:conditionalResults
(:coCondition (or (expired cardl)
((balance cardl) > (limit cardl)))
fail-message - String))

The general format of a conditional result is
(:coCondition P —params—).
Besides :args and :results, there can be a :locals declaration.
Processes can also have preconditions, which must be true before the
process can be started:

(Sequence :args (customer - Person)
:precondition (exists (x - Credit-card)
(and (credit-card-of x customer)
(not (maxed-out x))))
)

If the precondition is not true when the process begins, then some sort of
failure should occur. [[This is an area that still needs elaboration in the
OWL-S context.]] An outside observer looking at this process description
can assume that the process executor ensures that the precondition is true
at the appropriate time. The process executor itself might employ a planner
of some kind to elaborate the process with steps that make the precondition
true.

Processes can also have effects, which are represented using Effect and
ConditionalEffect expressions:

(ConditionaEffect
:ceCondition P
:ceEffect FE)

Example:

(Atomic ...
:args (cd - Credit-card newcharge - Number)
:effect (ConditionalEffect
:ceCondition (not (maxed-out cd))
:ceCondition (not (stolen cd))
:ceEffect (add (bal cd) newcharge)))

Note that a ConditionalEffect can have multiple conditions. The intent
is that if all are true, the effect will be “imposed.” (Please note that our
examples, which all seem to be talking about credit cards, do not reflect any
coherent theory of credit-card transactions! Think of them as a nonexhaus-
tive sampler of good and bad ideas for representing actions involving credit
cards.)

An unconditional effect is one that has no ceConditions. These can
be written using the same notation as for ConditionalEffect, but with
UnConditionalEffect substituted. Alternatively, one can just specify the
effect. So the following are equivalent:

(Atomic ...
:results (x - Number)
:effect (UnConditionalEffect
:ceEffect (know ((bal card) = x))))
and
(Atomic ...
:results (x - Number)
:effect (know ((bal card) = x)))

2.2 Process Instances, Tags, and Dataflow

There is a crucial distinction between a process and a process instance. The
distinction is obvious in a case like this:

(Sequence
(toggle-the-switch)
(toggle-the-switch))

which contains two instances of the process toggle-the-switch. In keeping
with RDF style, the description of a process may accompany one of its in-
stances, or may be placed elsewhere. In the example above, toggle-the-switch
must obviously be defined somewhere else. Instead, we could have written
this:

(Sequence
(Atomic-process :ID toggle-the-switch)
(toggle-the-switch))

If we want to give a name to a process instance, we use the tag construct:

(tag-scope (togl tog2)
(sequence
(tag togl (simple-process :ID toggle-the-switch))
(tag tog2 (toggle-the-switch))))

The tag-scope construct is necessarily to indicate the scope of the names.
However, there is an obvious rule for filling in the scope if left implicit:
The scope of a tag is as wide as possible but no wider than the innermost
iteration or process definition (that is, with an :ID attribute). OWL-S
syntax checkers should use this rule to fill in the scope of tags when left
implicit.

We can use tag names to describe dataflows between steps. Suppose
we have a process for authorizing uses of credit card. Because it must
communicate with some computer in a central location, it sometimes times
out if traffic to that computer is heavy. So the process has three possible
outputs: authorized, not-authorized, and timeout. The process used by
a retailer might be to try the subprocess one or two times and then give the
customer the benefit of the doubt. First, some definitions:

(owl:Class CC-check-res
(owl:one0f (owl:Thing :ID authorized)
(owl:Thing :ID not-authorized)
(owl:Thing :ID timeout)))

(owl:Class CC-acc-status
(owl:one0f (owl:Thing accepted)
(owl:Thing not-accepted)))

(Simple-process :ID check-auth
:args (cc - Credit-card-data)
:results (res - CC-check-res))

Now, a process using the entities defined:

(Sequence :args (cc - Credit-card-data)
:results (final-res - CC-acc-status)
(check-auth cc <= cc
res => (chires({ checkl)))
(tag checkl
(If-Then-Else :args (chlres - CC-check-res)
:ifCondition (chlres = timeout)
:then
(Sequence :results (ch2res - CC-acc-status)
(check-auth cc <= cc
res => (ch2res({ check?2)))
(tag check2

(If-Then-Else :args (ch2res - CC-check-res)
:results (res - CC-acc-status)

:ifCondition (ch2res = not-authorized)
:then (Value not-accepted => final-res)
:else (Value accepted => final-res))))
:else
(If-Then-Else

:ifCondition (chlres = authorized)

:then (Value accepted => final-res)

:else (Value not-accepted

=> final-res)))))

An expression of the form e; => e; may be embedded in any process expres-
sion. Here €; is a tagged parameter expression, an unambiguous specification
of a parameter of a particular step. The meaning of e; => e is that the value
of parameter e, when it becomes available, also becomes the value of eo. It
is called a dataflow expression.

The format of the e;’s in a dataflow expression is p([| | 11 [s]), where
s is an optional step tag. The presence of | vs. T tells us whether we are
referring to an input or output parameter, and p tells us its name. So
ch2res ({check2) means the input parameter ch2res of check?2, the second
attempt to check the credit card. If the s part is omitted, it means the
innermost process that the “=>" expression is found in that has an input or
output parameter p.

An expression of the form param (1) on the left of an “=>" may be
abbreviated as simply param. Similarly, an expression e=>param (|) may
be abbreviated as param<=e.

Because | and 1 are not available on standard computer keyboards, we
allow “in” and “out,” or “>” and “<” instead.

There is an issue about what an OWL-S execution engine should do if a
step has an unfilled input parameter but is otherwise ready to be executed.
Our current position is that the engine should pause until the value of the
parameter is available. It would probably be wise to avoid making this the
only determinant of control flow. That is, if data flows from step 1 to step
2, it’s a good idea to make sure that step 2 follows step 1 in a Sequence.
However, this is not always possible; there are control patterns that can be
expressed through dataflow and no other way (so far).

Another issue is whether a parameter of a step can get a value more
than once. The (current) answer is No. The intent is to allow reasoners
to make strong inferences about what exactly is flowing from one step to
another without detailed analysis of how the channel between them is set.
One consequence of this design decision is that nontrivial dataflow in loops
can’t really be represented with the tools at hand.

There is a built-in control contruct Compute that takes arbitrary inputs
(including none) and outputs, val. For instance, it could take numerical
data from two predecessor steps and sum them, thus:

(Compute:args (nl n2 - Number)
:results ((val (nl + n2)) - Number))
The form
(Compute :args (...) :results ((val E) - t) (val => e))
can be abbreviated
(Value :args (...) FE =>¢e)

2.3 Calling Processes

There are two ways to “call” a process: write ([Call]l process-name ...),
or (Invoke :service S process-name) ...). The former notation (in which
Call is optional) means that the process with the given name is to be cre-
ated and run as a subroutine of the current process. The second is more
general, and means that a process with the given name is to be found or
created, and the arguments are to be passed to it. The process might be
run as a subroutine, but it might also be found on another host somewhere,
and the arguments might be transmitted to it using (e.g.) SOAP messages.
Which of these possibilities (among others) obtains depends on the service
argument S, which might be the URL of a service description. Exactly what
S consists of, and how the information there interacts with the grounding
of the current process, are matters outside the scope of this document.

Two constructs exist to make it possible to write web services that may
be invoked from another process:

(Accept :service S :ID process-name :followWith process)

declares that this process implements the service described by S. When
some Invoke from another host finds this implementation, the process is
executed.

To provide more flexibility, several alternative Accepts can be wrapped
inside a Select:

(Select
(Accept ...)
(Accept ...)
(Accept ...))

This construct allows a single host to implement several services.

[[We need to be clear about whether Invoke is nonblocking, or can be
declared to be nonblocking; and under what circumstances an Accept starts
a new thread.]]

2.4 Miscellaneous Control Constructs

All that remains is to sketch the various control constructs and their mean-
ings.
* (Choice List-of-processes) chooses an element from the List-of-processes
and executes it. Which one is chosen is unspecified; it is either chosen by
machinery that is not revealed, or is the result of some planning process.
* (Split List-of-processes) spawns execution of all of the processes, in sep-
arate threads, as it were. The Split finishes immediately.
* (Split+Join List-of-processes) executes all the processes in the txrmitList-
of-processes in parallel, then waits until all complete before proceeding.
* (Repeat-While :whileCondition P :whileProcess (Q) executes Q un-
til P is false, possibly zero times.
* (Repeat-Until :untilCondition P :untilProcess () executes () un-
til P is true, possibly zero times.

[[A BNF syntax will go here when the notation is a bit more stable.]]

3 Relationship to “Deep” Syntax (RDF)

The original syntax for OWL-S was based on RDF and OWL, for the good
reason that it provides a declarative description of a process as a set of
assertions (“triples”). In this section we explain how the new surface syntax
relates to the RDF/OWL syntax.

A process specification corresponds to a description of a process. So
(Construct ...) corresponds to the RDF

<Construct>

</ Construct>

The class Construct we refer to as a control class; it is that class of pro-
cess whose construct is Construct. The fields of a control construct then
become properties of the object being described. This applies in a straight-
forward way to fields like :then and :else whose values are themselves
processes. The constructs Sequence, Split, and Split+Join have an in-
definite number of subprocesses. In the deep syntax, we use the property
components to specify a property of the process whose values are bags of
processes. So (Sequence p; ps ...p,) is translated into

<Sequence>
<components rdf:parseType="Collection">
p1*
Da*
Prn*
</components>
</Sequence>

(where p;* is the RDF form of p;). Similarly for Split and Split+Join.

Processes have zero or more arg properties and zero or more result
properties. [[Formerly known as inputs and outputs.]] The value of each
is an object of the class Parameter, or, more likely, one of its subclasses,
InParameter or OutParameter. We need a way to declare the type of the
values of the parameter, which is not the same as the type of the parameter
itself (which is always InParameter or OutParameter). To avoid having
to use OWL-Full, we do this with a property parameterValue suitably
restricted. Example:

<Atomic>

<arg>
<InputParameter rdf:ID="cd1">
<rdf:type>
<owl:Restriction>
<owl:onProperty rdf:resource="&owl-s;parameterValue"/>
<owl:allValuesFrom rdf:resource="&cc;CreditCard"/>
</owl:Restriction>
</rdf :type>
</InputParameter>
</arg>
</Atomic>

The property parameterValue should be read as “has as possible value.”
(We can’t refer to the actual value of a parameter without an ontology of
execution traces, which does not yet exist.) So the example above says that
the cdl input parameter must be a CreditCard.

The hard part of describing preconditions and effects in RDF is, as al-
ways, the fact these objects are formulas and terms obeying a recursive
grammar. Here we take an agnostic view on which gimmick to use in rep-
resenting such expressions, and just assume there is a class Condition and
a class Effect. (We have put forth proposals for representing these things
in the past, so this is not exactly an omission in OWL-S, just a hole among
whose unappetizing fillers we are still reluctant to choose.) In some domains,
Effects are just Conditions, but we reserve the right to use expressions
like (add (bal cdl) (cost mercedes-benz-2)), which says to increase
the balance on cdl by some (huge) amount of money.

We still need the classes ConditionalOutput and ConditionalEffect,
with properties coCondition, coOutput, ceCondition, and ceEffect. The
class UnconditionalEffect is a subclass of ConditionalEffect restricted
to having zero ceConditions.

Tags must be handled with some care in RDF. The tag-scope construct
behaves like a variable binder. We can have a TagBind control class with
two properties: tagName and process. The latter has cardinality 1, the
former has no bounds on cardinality.

The tag is actually declared by giving a process a tag property, whose
value is a tagSpec. Here is an example. The surface process spec

(tag-scope (toot foof)
(If-Then-Else
:ifCondition ...
:then (tag (A) ...)

:else (tag (B) ...)))
would be represented by the RDF

<TagScope>
<tagName xsd:datatype="&xsd;string">toot</tagName>
<tagName xsd:datatype="&xsd;string">foof</tagName>
<process>
<If-Then-Else>
<ifCondition> ... </ifCondition>
<then>
<Call>
<tag xsd:datatype="&xsd;string">toot</tag>
<callee ref:resource="#A"/>
</Call>
</then>
<else>
<Call>
<tag xsd:datatype="&xsd;string">foof</tag>
<callee ref:resource="#B"/>
</Call>
</else>
</I1f-Then-Else>
</process>
</TagScope>

Dataflows are objects of class DataFlow, which has two properties source
and destination, each of which is an object of type ParameterInst. A
ParameterInst is defined by its psParam, i-or-o, and psStep properties.
The property flow connects a process to the dataflows involving it.

So, for instance, the surface example

(Sequence
(tag stepl (A pen => ult({step2)))
(tag step2 (B)))

would look thus in RDF:

<TagBind>
<tagName xsd:datatype="&xsd;string">stepl</tagName>
<tagName xsd:datatype="&xsd;string">step2</tagName>
</tagBound>

10

<process>
<Sequence>
<components rdf:parsetype="Collection">
<Call>
<tag xsd:datatype="&xsd;string">stepl</tag>
<callee rdf:resource="#A"/>
</Call>
<Call>
<tag xsd:datatype="&xsd;string">step2</tag>
<callee rdf:resource="#B"/>
</Call>
</components>
<flow>
<DataFlow>
<source>
<ParameterInst psParam="pen"
i-or-o="&owl-s;out"
psStep="stepl"/>
</source>
<destination>
<ParameterInst psParam="ult"
i-or-o="&owl-s;in"
psStep="step2"/>
</destination>
</DataFlow>
</flow>
</Sequence>
</process>
</TagBind>

Unfortunately, most of the abbreviating conventions we can exploit in the
surface syntax do not apply in the deep syntax. The RDF version is fairly
readable, but difficult for humans to write without error.

Within a condition or effect, we adopt the convention that a reference to
a ParameterInst is taken to mean the value of that parameter at the step
in question. So the condition that the balance on a credit card be 0 would
be expressed as

<Atomic-formula>
<rdf :predicate rdf:resource="&math;equal"/>
<ParameterInst psParam="cdl" i-or-o="&owl-s;in" psStep="st33"/>

11

<rdf:subject rdf:resource="#cd1"/>
<rdf:object xsd:datatype="&xsd;integer">0</rdf:object>
</Atomic-formula>

using the DRS formalism, and assuming that c¢d1 is declared as a parameter
as at the beginning of section 3.
[[Compute is not yet mapped to a deep construct.]]

4 Ontology for Deep Syntax

[[To be released any day now.]|

5 Comments, conclusions, future directions

The wealth of new material we have introduced here may make some users of
OWL-S (and DAML-S) uneasy. Just how stable is this language? Actually,
almost all the changes we have made are augmentations to the notation,
not incompatible changes. The decision to represent processes as instances
instead of classes has made it much easier to fill in gaps that had stood
empty for a long time.

Although we provide the iterative constructs Repeat-While and Repeat—
-Until, we provide no way for them to (say) add up the values received
from some source. The only reason for this omission is that it would require
generalizing channels a bit. A loop requires the idea of an accumulator,
which changes in a clearly specified way on each iteration. At most once per
iteration a value is sent to the accumulator, and combined with the value
that’s already there. Probably the best way to model accumulators is as
parameters that contain a history list of the values accumulated to date.

12

