
Security forSecurity for
OWLOWL--SS

Grit Denker (SRI International)

Tim Finin, Lalana Kagal (UMBC)

Katia Sycara, Massimo Paolucci (CMU)

DAML PI Meeting

New York, May 25-26, 2004

Security Annotations for OWLSecurity Annotations for OWL--SS

! Goal: annotation and matchmaking of “security aspects” of
web services, including
" Requirements and capabilities of a web service

#briefly mentioned, as this has been presented in earlier PI meetings
" Enforced policies for authorization, privacy and confidentiality

!Approach
" Ontologies for high-level security mechanisms (e.g., “protocols used

by service” or “credentials accepted by resource”) and for
cryptographic characteristics of service parameters (e.g.,
“encrypted/signed input/output parameter”)

" Rei policy language
" Extensions of OWL-S Profile to indicate web service requirements,

capabilities and enforced policies
" Design and implementation of security matching algorithms

OWLOWL--S Profile Security Extensions S Profile Security Extensions

!Additional object properties
"securityCapability and securityRequirement

#subPropertyOf profile:parameter
#range SecurityMechanism

"policyEnforced
#subPropertyOf securityRequirement
#range rei:Policy

!Note: similar properties have been defined for a
class “Agent” to support client-server model of WS
applications

!see www.csl.sri.com/~denker/owl-sec/ for
ontologies and examples

Security Mechanism OntologySecurity Mechanism Ontology

SecurityMechanism class
!with subclasses: Syntax, KeyFormat, Protocols,

Signature, Encryption, SecurityNotation
!and object properties: relSecurityNotation,

reqCredential, syntax, etc. [with appropriate
range classes]

!imports: Credential ontology
"Simple/Composed Credential
"Certificates (X509, etc.), Keys, Login, Cookie,

BioMetric, IDCard, etc

Why is this not enough ?Why is this not enough ?

!Authorization only based on
"Protocols supported
"Credentials (login/password, certificate) required

!Need more expressive policies
"Based on attributes of requester, service and other

context
!Did not handle privacy at all
!Should be able to handle prohibitions as well

"E.g.. No undergraduate student should be able to
access this service

Policy-Based Security Infrastructure

Example policiesExample policies

!Authorization
"Policy 1: Stock service is not accessible after the

market closes
"Policy 2: Only members of the LAIT lab who are

Ph.D. students can use the LAIT lab laser printer

!Privacy/Confidentiality
"Policy 3: Do not disclose my my SSN
"Policy 4: Do not disclose my telephone number
"Policy 5: Do not use a service that doesn’t encrypt all

input/output
"Policy 6: Use only those services that required an

SSN if it is encrypted

Specification of PoliciesSpecification of Policies

!Use of Rei policy specification language

!Authorization, Privacy and Confidentiality Policy are
subclasses of Rei’s Policy class

#Authorization policies usually associated with services
#Privacy & confidentiality policies usually associated with clients

!Authorization policies
" Permissions & prohibitions over attributes of the requester, service,

and the invocation context

!Privacy policies
" Here: Restricting access to services satisfying I/O conditions

!Confidentiality policies
" Here: Restrictions on cryptographic characteristics of I/O parameter
" => Ontology for cryptographic characteristics of service parameters

Ontology: Cryptographic Ontology: Cryptographic
Characteristics of ParametersCharacteristics of Parameters

!Classes InfObject (information object)

!Subclasses EncInfObj (encrypted inf. obj.) SigInfObj
(signed inf. obj.)

!Object property of InfObj is baseObject
" Describing the type or structure of the information that is encoded

!Further object property of InfObj is cryptoAlgUsed
" Defining the algorithm used to encode the information

!Web service input/output parameters can be described as
information objects that reference the type of information
(e.g., SSN) and the kind of security technique applied to it
(e.g., encryption or signature)

!Confidentiality policies use same approach

!A declarative policy language for describing policies over
actions

!Represented in OWL + logic-like variables

!Based on deontic concepts
" Right, Prohibition, Obligation and Dispensation

!Conflict resolution through the use of meta policy
specifications

Rei Policy LanguageRei Policy Language

! All members of the LAIT lab have the right to use action
‘printing’

! Constraint
<constraint:SimpleConstraint rdf:about="&labpolicy;members_of_lait"

constraint:subject="&labpolicy;var1"

constraint:predicate="&univ;affiliation"

constraint:object="&labpolicy;LaitLab"/>

! Right
<deontic:Right rdf:about="&labpolicy;right_to_print”>

<deontic:actor rdf:resource="&labpolicy;var1"/>

<deontic:action rdf:resource="&labpolicy;printing"/>

<deontic:constraint rdf:resource="&labpolicy; members_of_lait "/>

</deontic:Right>

Unify

Rei ExampleRei Example

ExampleExample

!Mary is looking for a reservation service
" foaf description for Mary’s personal information
" Confidentiality policy

#Don’t use services that use unencrypted personal information, i.e.,
require input parameter of services to use encrypted personal
information

" Privacy policy
#SSN should never be disclosed, i.e., forbid services that have as output

an instance of type SSN

!BravoAir is a reservation service
" OWL-S description
" Authorization policy

#Only users belonging to the same project as John can access the
service

Mary’s FOAF DescriptionMary’s FOAF Description

<!-- Mary's FOAF description -->

<foaf:Person rdf:ID="mary">

<foaf:name>Mary Smith</foaf:name>

<foaf:title>Ms</foaf:title>

<foaf:firstName>Mary</foaf:firstName>

<foaf:surname>Smith</foaf:surname>

<foaf:homepage
rdf:resource="http://www.somewebsite.com/marysmith.html"/>

<foaf:currentProject rdf:resource=" http://www.somewebsite.com/SWS-
Project.rdf "/>

<sws:policyEnforced rdf:resource="&mary;ConfidentalityPolicy"/>

</foaf:Person>

</rdf:RDF>

Bravo Authorization PolicyBravo Authorization Policy

<entity:Variable rdf:about="&bravo-policy;var1"/>

<entity:Variable rdf:about="&bravo-policy;var2"/>

<constraint:SimpleConstraint

rdf:about="&bravo-policy;GetJohnProject"

constraint:subject="&john;John"

constraint:predicate="&foaf;currentProject"

constraint:object="&bravo-policy;var2"/>

<constraint:SimpleConstraint

rdf:about="&bravo-policy;SameProjectAsJohn"

constraint:subject="&bravo-policy;var1"

constraint:predicate="&foaf;currentProject"

constraint:object="&bravo-policy;var2"/>

<!-- constraints combined -->

<constraint:And rdf:about="&bravo-policy;AndCondition1"

constraint:first="&bravo-policy;GetJohnProject"

constraint:second="&bravo-policy;SameProjectAsJohn"/>

<deontic:Right rdf:about="&bravo-policy;AccessRight">

<deontic:actor rdf:resource="&bravo-policy;var1"/>

<deontic:action rdf:resource="&bravo-
service;BravoAir_ReservationAgent"/>

<deontic:constraint rdf:resource="&bravo-
policy;AndCondition1"/>

</deontic:Right>

………

<rdf:Description rdf:about="&bravo-
service;BravoAir_ReservationAgent">

<sws:policyEnforced rdf:resource="&bravo-
policy;AuthPolicy"/>

</rdf:Description>

`

Matching & Compliance CheckingMatching & Compliance Checking

!Matching of web service and agent security
requirements and capabilities
"Prototype implementation uses JTP
" Integrated with CMU Matchmaker

!Compliance checking of policies
"Design and implementation of algorithm for matching

policies
" Integration of the algorithm into CMU’s Matchmaker and

OWL-S Virtual Machine (future work)

Matchmaker +
Security Reasoner

Agent

A Web Service

Req: Authentication, XML
Cap: OpenPGP

Req: Encryption
Cap: XKMS

1. Functional matching
2. Security matching

Matching Security AnnotationsMatching Security Annotations

Policy Compliance CheckingPolicy Compliance Checking

Bravo Service
OWL-S Desc

URL to foaf desc
+ query request

<sws:policyEnforced rdf:resource =
"&bravo-policy;AuthPolicy"/>

BravoAir
Web serviceMary

Matchmaker
+

Reasoner

Policy Compliance CheckingPolicy Compliance Checking

Mary’s query = Bravo Service ? YES
Extract Bravo’s policy
Does Mary meets Bravo’s policy ?
Authorization enforcement complete

<foaf:currentProject rdf:resource =
"http://www.somewebsite.com/SWS-Project.rdf"/>

<constraint:SimpleConstraint
rdf:about = "&bravo-policy;GetJohnProject”
constraint:subject="&john;John"
constraint:predicate="&foaf;currentProject"
constraint:object="&bravo-policy;var2"/>

var2 = http://www.somewebsite.com/SWS-Project.rdf

<constraint:SimpleConstraint
rdf:about="&bravo-policy;SameProjectAsJohn"
constraint:subject="&bravo-policy;var1"
constraint:predicate="&foaf;currentProject"
constraint:object="&bravo-policy;var2"/>

Is the constraint true when
var2 = http://www.somewebsite.com/SWS-Project.rdf
var1 = http://www.cs.umbc.edu/~lkagal1/rei/examples/sws-
sec/MaryProfile.rdf

Mary
BravoAir

Web service

<deontic:Right rdf:about="&bravo-policy;AccessRight">
<deontic:actor rdf:resource="&bravo-policy;var1"/>
<deontic:action rdf:resource="&bravo-service;BravoAir_ReservationAgent"/>
<deontic:constraint rdf:resource="&bravo-policy;AndCondition1"/>

</deontic:Right>

<policy:Granting rdf:about="&bravo-policy;AuthGranting">
<policy:to rdf:resource="&bravo-policy;var1"/>
<policy:deontic rdf:resource="&bravo-policy;AccessRight"/>

</policy:Granting>

<sws:AuthorizationPolicy rdf:about="&bravo-policy;AuthPolicy">
<policy:grants rdf:resource="&bravo-policy;AuthGranting"/>

</sws:AuthorizationPolicy>

<rdf:Description rdf:about="&bravo-service;BravoAir_ReservationAgent">
<sws:policyEnforced rdf:resource="&bravo-policy;AuthPolicy"/>

</rdf:Description>

Algorithm for Matching PoliciesAlgorithm for Matching Policies

1. After the client sends a query request, MatchMaker finds
a matching service and fetches its OWL-S description

2. It extracts the service’s authorization policy from the
policyEnforced attribute and sends it to the Rei
Reasoning Engine along with the client’s description
" Rei returns true or false based on whether the client meets the

authorization policy of the service. If false, matching failed.

3. The matchmaker extracts the client’s privacy and
confidentiality policies and sends it to the Rei Reasoning
Engine along with the service’s OWL-S description
" Rei returns true or false based on whether the privacy and

confidentialiy policies are met or violated. If false, matching failed.

4. Matching between client and service is complete

Some Open QuestionsSome Open Questions

!Applicability of other policy languages

! Integration with WS* standards

!Enforcement of privacy, confidentiality and data integrity
policies during execution
" Confidentiality

#One possible approach is for the OWL-S virtual machine to handle
encryption/signing on behalf of the web service and the requester

" Privacy
#Reputation
#Trusted third parties

SummarySummary

! Contribution
" Specification of security policies for web services
" Authorization policies are enforced during discovery
" Privacy and confidentiality policies are matched

Other SecurityOther Security--related Workrelated Work

! Design and annotation of semantic security services
" Grit Denker, Andrew Ton, Son Nguyen (SRI)
" See http://www.csl.sri.com/~denker/owl-sec/SecurityServices/

! OWL-S Specification of Service Interaction Protocol
" Grit Denker (SRI), Terry Payne and Ron Ashri (Univ. of

Southampton, UK), Mike Surridge and Darren Marvin (IT
Innovation, UK)

" UK project “Semantic Firewall”
" See http://www.csl.sri.com/~denker/owl-sec/sfw

