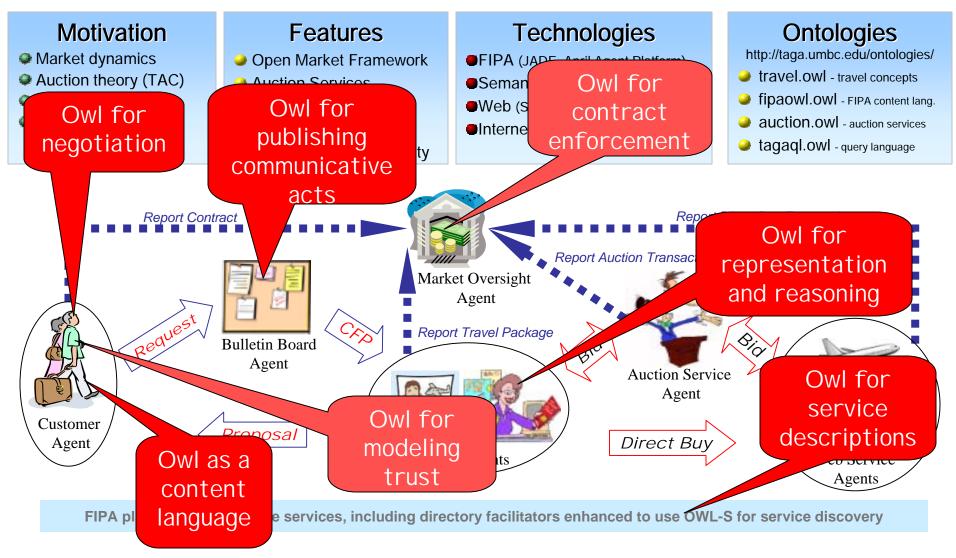
DAML Tools for Intelligent Information Annotation, Sharing and Retrieval

UMBC

Johns Hopkins University Applied Physics Lab MIT Sloan School

May 2004

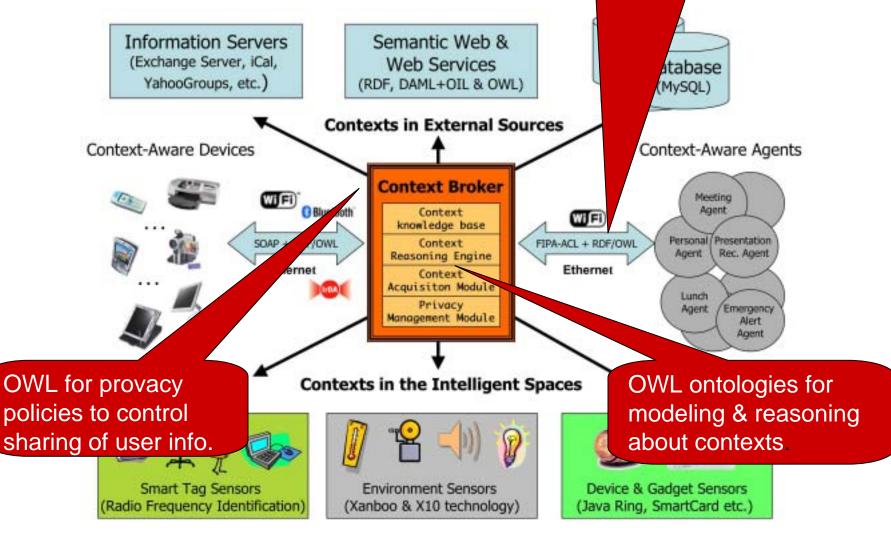
Our Research Agenda


- We have three themes, each lead by one team member and with participation from all
 - Semantic web & agents (UMBC) Tim Finin, Anupam Joshi, Yun Peng
 - Semantic web & information retrieval (JHU) Jim Mayfield
 - Semantic web & rules (MIT)
 - Benjamin Grosof
- Our approach is largely experimental -- building prototypes & tools rather than proving theorems

Theme #1

OWL will enable agents in open, dynamic environments (e.g., agentcities) to share knowledge and manage security, privacy, trust and commitments.

- -Working in multiagent systems
- -Supporting pervasive systems
- -Supporting trust and security in web services


Travel Agent Game in Agentcities

http://taga.sourceforge.net/

OWL in Pervasive

OWL ontologies allow broker, devices, agents & services to share information.

http://pervasive.semanticweb.org/

Rei Policy Applications: past, present & future

999

2002

- Coordinating access in *supply chain management system*
- Authorization policies in a *pervasive computing environment*
- Policies for team formation, collaboration, information flow in *multi-agent systems*
- Security in semantic web services
- Privacy and trust on the Internet
- Privacy in a pervasive computing environment

Theme #2

OWL will be integrated with other knowledge representation paradigms for real world reasoning, e.g. rule based systems and bayesian belief networks

- -F-OWL reasoner
- -Bayes OWL
- -OWL and rules

F-OWL Reasoner

- F-OWL is an OWL reasoner implemented in XSB's Flora-2 system.
- <u>http://fowl.sourceforge.net/</u>
- Features:
 - -Supports RDF and OWL-Full
 - -Supports RDF/N-Triple query
 - -Supports Dynamic Import
 - -Provides a Java API
 - Tested with the RDF and OWL test cases, See <u>http://www.w3.org/2003/08/owl-systems/test-results-out.html</u>

Bayes Owl

- Probabilistic extension for uncertainty in ontologies:
 - Extend OWL for probabilistic annotation
 - Translate OWL ontology to Bayesian network (OWL-BN)
 - Probabilistic mappings between individual OWL-BNs
 - ⇒Treat ontology reasoning as Bayesian inference
- Plan for remainder of 2004
 - Complete translation rules for RDF constructors and formalize translation rules based on OWL semantics
 - Complete construction procedure for conditional probability tables
 - Complete translation algorithm, $OWL \rightarrow OWL$ -BN
 - Preliminary investigation on probabilistic concept mapping between OWL-BNs

MIT rules work

- 1. How to combine rules with ontologies
- 2.Uses of rules for services, especially in e-commerce, e.g. for
 - E-contracts
 - Financial reporting and information
 - Trust policies
- 3. Analysis of business case, value, strategy, and requirements for rules and services

New MIT Research Results

• Trust Policies in Finance using Rules

Application scenarios; analysis of business case, value, strategy, and requirements

• **Representing Process Handbook Ontologies using Rules** – including OO-style default inheritance

Early prototype; new design improves scaleability; analysis of business case, value, and strategy (e.g., to use Legacy OO process framework knowledge)

• Refining SweetDeal E-Contracting approach (rules+ontologies)

Concepts, paper, presentations

• SWRL V0.5, V0.6 – co-authored; co-led Joint Committee rules effort

Adds horn rules and RuleML syntax to OWL, in tightly integrated fashion. Reports; W3C member submission.

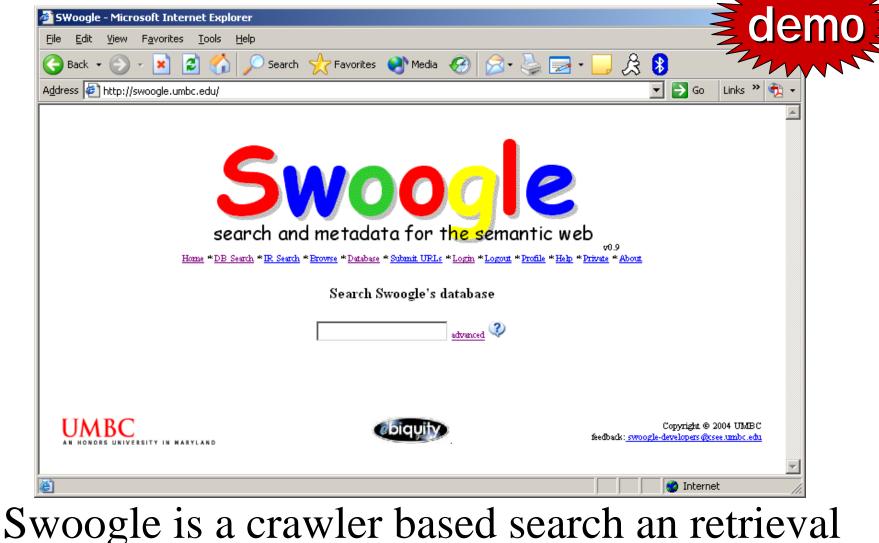
• RuleML V0.85 – co-authored; co-led RuleML Initiative

Adds improved syntax support for OWL, RDF, and object-oriented -- in coordination with development of SWRL

MIT Plan: next 6 months

- Continue the focus areas listed earlier
- New phase effort on tools for rules
 - New prototyping of SweetRules for RuleML/SWRL translation/interoperability, inferencing & authoring/testing
 - Support OWL, XSB, Jess, other systems
 - -Pluggable architecture to integrate tools from multiple groups in and out of DAML
 - -Open source on SemWebCentral

Theme #3


OWL will enable IR systems to work with documents which contain knowledge encoded in semantic markup.

- -Swoogle indexing and retrieval system for semantic web documents
- -Swangling semantic web documents to prepare them for other conventional IR systems like Google.

Why use IR techniques?

- To retrieve over the structured & unstructured parts of a semantic web document
- To prepare for the appearance of text documents with embedded SW markup
- To harness web infrastructure such as Google
- To take advantage of the unique and useful properties of IR techniques
 - e.g., ranking matches, computing the similarity between two documents, relevance feedback, etc.

http://swoogle.umbc.edu/

system for semantic web documents

- Google started indexing RDF documents some time in late 2003
- Can we take advantage of this?
- We've developed techniques to get some structured data to be indexed by Google
- And then later retrieved
- Technique: give Google enhanced documents with additional annotations containing *Swangle Terms* TM

Swangle defined

swan·gle

Pronunciation: 'swa[ng]-g&l Function: *transitive verb* Inflected Forms: swan·gled; swan·gling /-g(&-)li[ng]/ Etymology: Postmodern English, from C++ *mangle*, Date: 20th century

- 1: to convert an RDF triple into one or more IR indexing terms
- 2: to process a document or query so that its content bearing markup will be indexed by an IR system

Synonym: see tblify

- swan·gler /-g(&-)l&r/ noun

Swangling

- Swangling converts a triple into seven word-like terms
 - One for each non-empty subset of the triple components with missing elements replaced by a "don't care" URI
 - Terms generated by a hashing function (e.g., MD5)
- Swangling an RDF document means adding triples for swangle terms.
 - Triples might be explicit ones or added by inference
 - Resulting RDF document can be indexed and retrieved via conventional search engines like Google
- Allows one to search for a semantic web document with a triple that claims "*Osama bin Laden is located at X*"

A Swangled Triple

<rdf:RDF

xmlns:s = "http://swoogle.umbc.edu/ontologies/swangle.owl#"
</rdf>

• • •

<s:SwangledTriple>

<s:swangledText>N656WNTZ36KQ5PX6RFUGVKQ63A</s:swangledText> <rdfs:comment>Swangled text for

[http://www.xfront.com/owl/ontologies/camera/#Camera,

http://www.w3.org/2000/01/rdf-schema#subClassOf,

http://www.xfront.com/owl/ontologies/camera/#PurchaseableItem] </rdfs:comment>

<s:swangledText>M6IMWPWIH4YQI4IMGZYBGPYKEI</s:swangledText> <s:swangledText>H02H3F0PAEM53AQIZ6YVPFQ2XI</s:swangledText> <s:swangledText>2AQEUJOYPMXWKHZTENIJS6PQ6M</s:swangledText> <s:swangledText>IIVQRXOAYRH6GGRZDFXKEEB4PY</s:swangledText> <s:swangledText>75Q5Z3BYAKRPLZDLFNS5KKMTOY</s:swangledText> <s:swangledText>2FQ2YI7SNJ7OMXOXIDEEE2WOZU</s:swangledText> </s:SwangledTriple>

Summary: 2004 Deliverables

- Software tools on semwebcentral.org
 - Swangling tools, F-owl, Rei, SweetDeal, BBN tools, ...
- OWL ontologies
 - For FIPA standards
 - For security and trust
 - For swangling
 - SOUPA: Standard Ontologies for Ubiquitous and Pervasive Applications
- Hosted services
 - Swoogle
- Contributions to standards
 - RuleML, SWRL, SWSI, ...