
Bubo - Implementing OWL in rule-based systems

Raphael Volz
Institute AIFB

University of Karlsruhe (TH)
D-76128 Karlsruhe, Germany

volz@aifb.uni-
karlsruhe.de

Stefan Decker
ISI

University of Southern
California (USC)

Marina-Del-Rey, CA

stefan@isi.edu

Daniel Oberle
Institute AIFB

University of Karlsruhe (TH)
D-76128 Karlsruhe, Germany

oberle@aifb.uni-
karlsruhe.de

ABSTRACT
The Semantic Web is build around a semi-structured data model -
RDF - and an explicit conceptualization for such data - so-called
ontologies. A standardized language for the specification of the
latter has recently be proposed by the W3C. This paper explores
the strategies for the implementation of this language in logic pro-
gramming environments such as Prolog and relational databases.
Along these lines we establish the subset of OWL primitives that
is compatible for further rule-based extensions paving the way to
the upper levels of the Semantic Web layer cake. We also capture
a subset, for which query languages can easily be implemented by
compiling expressions given in a declarative query language to the
query language offered by the system on top of which the imple-
mentation is based.

1. INTRODUCTION
The Semantic Web is build around a semi-structured data model

- RDF - and an explicit conceptualization for such data - so-called
ontologies. A standardized language for the specification of the
latter has recently be proposed by the W3C. This language, OWL
[12], is based on a description logic SHIQ [8]. Description log-
ics offer efficient support for questions about a conceptualization,
namely whether classes are equivalent or disjoint to each other,
whether a class subsumes another class, or whether a given class
description is satisfiable at all.

The Query language perspective. However, the capabilites
of description logics with respect to instances is rather low. It can-
not even express the least-expressive query language usually taken
into account by database research - conjunctive queries [3]. This
area is a strong hold of logic programming, which offers highly ex-
pressive constructs for instance reasoning. Hence, it is very promis-
ing to combine description logics with this paradigm to obtain the
ability to state expressive instance queries on terminological knowl-
edge bases.

The rule language perspective. Another perspective for this
combination is the extension of OWL knowledge bases with logic
program rules, which offer further modelling capabilities. The layer
of rule languages has already been envisioned by Tim-Berners Lee
in his famous Semantic Web layer cake (cf. Figure 1) and a large
group of people from the logic programming community are work-
ing on RuleML1, a possible candidate for this layer. However,

1http://www.dfki.uni-kl.de/ruleml/

Copyright is held by the author/owner(s).
WWW2003, May 20–24, 2003, Budapest, Hungary.
ACM xxx.

RuleML is not layered on top of the ontology layer, as envisioned,
instead it operates on the data layer only. Hence, the ontology and
rules worlds are split. Our approach establishes a link between the
two worlds and opens the possibility to state rules on top of termi-
nological knowledge bases.

The data integration perspective. The majority of today’s
data resides in relational databases. This will not change when
the Semantic Web grows. Most likely people will start export-
ing their data as RDF instances according to some ontology they
have chosen. This essential leads to data that is replicated to enable
ontology-based processing of that data. Today, the latter is done
by reading some files into a classifier, such as FaCT [8] or Racer
[6]. However, logic programming systems such as XSB [15] allow
to access database data directly through built-in predicates. Fur-
thermore, stratified Datalog programs, a restricted variant of logic
programs with limited expressivity, can directly be implemented on
top of SQL99-compliant relational databases. Hence, a LP-based
implementation of OWL allows a closer interaction with live data.

The implementation perspective. Currently, no full imple-
mentation of OWL is available. In order to become a success many
implementations of OWL must be available. Many free and com-
mercial implementations of logic programming systems are avail-
able. SQL99-compliant databases enjoy an even wider user com-
munity. This paper shows how these systems can be used as a basis
for reasoning with OWL.

The paper is structured as follows. Section 2 gives a short overview
about the relation between the aforementioned Semantic Web lay-
ers and gives a brief introduction to OWL. Section 3 shows how
instance data may be represented in LP systems and discusses the
chosen representation with respect to efficiency and ease-of inte-
gration with legacy data sources. Section 4 details the basic princi-
ples used to map of OWL ontologies to LP knowledge bases. Sec-
tion 5 discusses the mappings in detail and establishes the OWL/LP
fragment. The subset of LP, which can be implemented on top of
relational databases is presented in Section 7. Section 6 introduces
our prototypical implementation. We conclude discussing related
work summarizing our contribution and giving an outlook to future
work.

2. THE SEMANTIC WEB

2.1 The basic idea
The term Semantic Web encompasses efforts to build a new WWW

architecture that enhances content with formal semantics. This will
enable automated agents to reason about Web content, and carry
out more intelligent tasks on behalf of the user. Expressing mean-

Figure 1: Semantic Web Layer Cake

ing is the main task of the Semantic Web. In order to achieve
this objective several layers of representational structures are en-
visioned. Figure 1 presents the layers of the Semantic Web: (I) the
XML layer is used as a syntax layer, (II) the RDF layer represents
the data layer, (III) the ontology layer, based on a formal common
agreement, specifies meaning and structure of the data, (IV) the
logic layer provides rules that enable further intelligent reasoning,
(V) the proof layer supports the exchange of proofs in inter-agent
communication.

2.2 The XML syntax layer
XML allows users to add arbitrary structure to their documents

but says nothing about what the structures mean. Tag-names per
se do not provide semantics. The Semantic Web utilizes XML for
syntax purposes only.

2.3 The RDF data layer
The Resource Description Framework [10] is an infrastructure

that enables encoding, exchange and reuse of structured metadata.
Principally, information is stored in the form of RDF statements,
which represent data in an uniform way (subject, predicate, ob-
ject). This simple edge-labeled graph model facilitates machine
understandability by resolving syntactic ambiguities. This abstract
model is serialization independent, though the proposed standard
serialization relies on XML. Unfortunally, the semantics specified
for this layer already defines first entailments. Hence, systems op-
erating on RDF data should provide some reasoning mechanisms
to gain full compatibility with the standard. Due to the general-
ity of the data model RDF offers modelling primitives that can be
extended according to the needs at hand.

2.4 Specifying meaning - the ontology layer
The generality of RDF allows to build the third basic compo-

nent of the Semantic Web - ontologies. In Artificial Intelligence
and Web research the term ontology describes a formal, shared
conceptualization of a particular domain of interest. By defining
shared and common domain theories, ontologies help both people
and machines to communicate concisely, supporting the exchange
of semantics and not only of syntax.

Imagine a simple genealogy application. Apparently, the domain
description, viz. the ontology, will include classes that talk about
Persons and make a distinction between Males and Females . Peo-
ple are related with each other by several relations expressing par-

enthood and siblings. Ergo, properties like hasParent, childOf etc.
will be in place. This domain description can be easily constructed
with standard description logics (cf. Figure 2) .

Very recently a working group at W3C has continued the work
of several research programs to come up with a recommendation
for an ontology language. The language has two layers of prim-
itives: a reduced set called OWL Lite and a full set of primitives
OWL/DL. OWL/DL corresponds largely to an established descrip-
tion logic variant called SHIQ [8]. A Description logic is defined
recursively by starting from a schema S of class names CN , prop-
erty names PN and names for individuals IN . The semantics of
terms is given denotationally, using the notion of an interpretation
I =< �I , (·)I >, which starts with a domain of values�I and a
mapping (·)I from class descriptions to subset of the domain, and
property descriptions to sets of 2-tuples over the domain. Each in-
dividual name is associate to some value in �I . The Interpretaion
function is extended recursively to composite descriptions as given
in Table 2.4.

The meaning of a description D is the mapping from interpreta-
tions I to extents DI and a variety of queries can now be defined
on this basis, (I) whether a description E subsumes D, this is the
case iff for every interpretation I, DI ⊆ EI . (II) whether a de-
scription D is coherent/satisfiable, this is the case if there is at least
one I such that DI �= ∅, and (III)whether descriptions E and D are
disjoint, this is the case iff for every interpretation I, DI∩EI = ∅.

The reader may note, that OWL additionally features the primi-
tives FunctionalProperty, InverseFunctionalProperty
2 and SymmetricProperty. All can straightforwardly be ex-
pressed via a combination of other primitives provided in SHIQ.
For example, a SymmetricProperty can be expressed by say-
ing that it is inverse to itself (P inverseOf P).

A further layer of OWL with an extended semantics that is fully
compatible to the RDF semantics is also defined in the specifica-
tion, but not considered here since no efficient reasoning strategies
are known for this variant. Also we do not consider the issue of
datatypes, which is still under active discussion.

2.5 Further reasoning - The logic layer
While the ontology layer already provides means to deduce new

information and provides restricted reasoning support, many appli-
cations require further means to combine and deduce information.
If we return to the given example, the sisters and aunts of a person
have to be stated explicitly. However, within a rule-based system, it
is easy to build rules which capture those facts automatically, e.g.:

sisterOf(X,Y) :- childOf(X,Z), childOf(Y,Z), Woman(Y).
auntOf(X,Y) :- childOf(X,Z), sisterOf(Z,Y).

Logic programming systems, such as Prolog, HiLog[4] and Frame
Logic [9], offer efficient environments to do so.

A large group of people from the logic programming community
are working on a standard for exchange of rules in the Semantic
Web called RuleML3. Although a possible candidate for this layer,
RuleML is not layered on top of the ontology layer, as envisioned,
instead it operates on the data layer only. Hence, the ontology and
rules worlds are split. This paper therefore investigates how those
two worlds can be related to each other. Not surprisingly, as we
will see in section 4, the worlds are not disjoint.

Figure 3 sketches the semantic relation between RDF, OWL and
the world of rules. We will establish two intersections of OWL
and logic programming: OWL/LP (red) and OWL/Datalog (pur-
ple). The OWL/Datalog fragment can be safely implemented on
2not shown in the table
3http://www.dfki.uni-kl.de/ruleml/

OWL Primitives Interpretation
Thing �I

Nothing �
C subClassOf D CI ⊆ DI

C unionOf D CI ∪DI

C intersectionOf D CI ∩DI

complementOf C �I\CI

C disjointWith D CI ∩DI = �
P subPropertyOf Q P I ⊆ QI

C sameClassAs D CI = DI

P samePropertyAs Q P I = QI

x sameIndividualAs y xI = yI

x differentIndividualFrom y xI ∈ �I\{y}
TransitiveProperty P ∀p, q, r[(p, q) ∈ P I∧

(q, r) ∈ P I →
(p, r) ∈ P I]

SymmetricProperty P ∀p, q[(p, q) ∈ P I ↔
(q, p) ∈ P I]

P inverseOf Q P I = QI−1
]

P minimumCardinality C n {x ∈ �I |�{y|(x, y) ∈ P I∧
y ∈ CI} � n}

P maximumCardinality C n {x ∈ �I |�{y|(x, y) ∈ P I∧
y ∈ CI} � n}

P allValuesFrom C ∀x, y[(x, y) ∈ P I →
y ∈ CI]

P someValuesFrom C ∀x∃y[(x, y) ∈ P I∧
y ∈ CI]

P hasValue b ∀x[(x, b) ∈ PI]
oneOf(b1, b2, ..., bi, bn) {bI1 , ..., bIn}

Table 1: OWL Primitives and their semantics

top of relational databases using known techniques such as magic
templates [13], while OWL/LP can be easily implemented in Pro-
log variants such as XSB [15]. The later involves further steps
such as the implementation of skolemization to substitute existen-
tial quantifiers by functions and the axiomatization of equivalence
(cf. 4).

The established fragments can then be extended with additional
rules operating on the ontology to obtain the intended reasoning
support. If an appropriate exchange syntax is standardized for such
rules, this extension can also be communicated across systems.

3. DATA REPRESENTATION
OWL ontologies are syntactically represented in RDF. RDF al-

lows a very simple form of representation, which maps each RDF
statement to one logical ternary predicate such as chosen in [14, 2]:

statement(subject,predicate,object)

Here, subject and predicate correspond to RDF resources and ob-
ject is either a RDF resource or a RDF datatype/literal. This ver-
tical form of representation is often chosen to representing sparse
data with a large number of attributes such as found in many e-
Commerce or digital library scenarios [1].

The usage of such a single ternary relation for storage of directed
labelled-graphs such as RDF seems to be the most simple solution.
On the other hand, each resource-value pair could be stored in a
separate binary relation on a per property basis. The evaluation of
[1] suggests that this representation also slightly outperforms the
naı̈ve ternary representation.

Animal

Male FemalePerson

Man Woman@ hasParent

allValuesFrom

Person

hasParent >

hasFather hasMother

< childOf

OWL Definitions
Class Definitions
Person subClassOf Animal Male disjointWith Female
Male subClassOf Animal Female subClassOf Animal
Man subClassOf Person Man subClassOf Male
Woman subClassOf Person Woman subClassOf Female
Person subClassOf (hasParent allValuesFrom Person)

Property Definitions
hasFather subPropertyOf hasParent hasParent inverseof childOf
hasMother subPropertyOf hasParent

Figure 2: Genealogy Ontology example

3.1 Data integration perspective
From a perspective of integrating existing data the binary rep-

resentation offers additional benefits (cf. Figure 4. Existing data
can be transformed to the appropriate binary form by means of re-
lational view definitions. Such a view definition may also integrate
multiple source tables by means of using the union operator. Using
a single ternary representation would yield a single view definition,
which is very complex to write and maintain and will ultimately
lead to very poor performance due to the complexity of the involved
query.

For example in Figure 4 several properties defined in the ontol-
ogy have to be associated with concrete data that is stored in sev-
eral relational tables. The mapping between the ontology and this
live data is done by transforming the source data in several binary
representations using SQL views. During this process data can be
transformed, e.g. table columns can be concatenated. Keys from
each table are translated to globally unique URIS and used as in-
stance idenfiers4. Each binary view is then used as data source for
building the extension of the respective property in the ontology.
The reader may note that additional indirections have to be used to
cope with derived facts in ObjectProperties (cf. Section 7)

3.2 Translation to predicates

4In the example this is done by appending a URI prefix, which
has to be unique for each table. In case of compound keys a more
sophisticated approach has to be used, e.g. coding each key com-
ponent as parameters.

RDF OWL-DL

Prolog

Datalog

OWL-Full

Figure 3: Relation between Horn Clause Programs, RDF and
OWL

10Dipl.-Inf.VolzRaphael1

10Prof. Dr.StuderRudi2

10Dipl.-Inf,OberleDaniel3

Employer(FK)TitleLastnameFirstnameID(PK)

10Dipl.-Inf.VolzRaphael1

10Prof. Dr.StuderRudi2

10Dipl.-Inf,OberleDaniel3

Employer(FK)TitleLastnameFirstnameID(PK)

30.21278AIFB10

BuildingHead (FK)Dept. (FK)InstituteID(PK)

30.21278AIFB10

BuildingHead (FK)Dept. (FK)InstituteID(PK)

Person
Institute

X:name(domain, range)

Create view x:name as

Select concat('url_prefix_p‘,id),

concat(vorname, name)

From AIFBNET.PERSON

X:title(domain, range)

Create view x:title as

Select concat('url_prefix_p‘,id),

title

From AIFBNET.PERSON

<owl:DatatypeProperty

rdf:id = "X:name" />

<owl:DatatypeProperty

rdf:id = "X:title" />

<owl:Property

rdf:id = "X:member" />

...

X:member(domain, range)

Create view x:name as

Select concat('url_prefix_p‘,p.id),

concat('url_prefix_i‘,p.employer)

From AIFBNET.PERSON p

S
o

u
rc

e
D

a
ta

In
s

ta
n

c
e

D
a

ta
O

n
to

lo
g

y
D

e
fi

n
it

io
n

Figure 4: Integration of source data

RDF statements are written as binary predicates. Here the pred-
icate of the statement is the name of the Datalog predicate. Hence,
if (a, b) is instance of property P , we write the fact

P (a, b). (1)

In our approach this representation is extended with additional
unary relations which are used to store the class-individual relation-
ship, where a separate predicate is created for each class. Hence,
additionally to writing type(a,C)., facts stating that a is an in-
stance of a class C, we write the fact

C(a). (2)

This syntactic construction supports a more efficient processing
of class extensions. Otherwise we would have to add rules, that
distinguish between all three use cases of the RDF type predicate:
class instantiation, class and property definition. As a side effect, a
catalogue of classes and properties of their respective OWL type5

is created.

4. OWL TRANSLATION PROCESS
This section now presents how and which parts of OWL can be

implemented in logic programming environments. The translation
is achieved through a mapping operator T that is applied recur-
sively such as done in [3]. It takes DL-constructs as parameter and
yields an unary predicate C(x) for classes T x〈C〉 and a binary
predicate P (x, y) for properties T x,y〈P 〉 and thereby fits into the
aforementioned data representation scheme.

In order to translate n-ary class constructors such as union, enu-
meration and intersection, (n-1) intermediate anonymous class ex-
pressions are built, that provide a pairwise combination of descrip-

5such as ObjectProperty, SymmetricProperty etc.

OWL Class Expressions T x〈C〉
Thing x = x
Nothing ¬(x = x)
C subClassOf D ∀x[T x〈D〉 ← T x〈C〉]
C unionOf D T x〈C〉 ∨ T x〈D〉
C intersectionOf D T x〈C〉 ∧ T x〈D〉
complementOf C ¬T x〈C〉
C disjointFrom D ¬∃x(T x〈C〉 ↔ T x〈D〉)
P allValuesFrom C ∀y[T y〈C〉 ← T x,y〈P 〉]
P someValuesFrom C ∃y[T y〈C〉 ∧ T x,y〈P 〉]
C sameClassAs D ∀x[T x〈C〉 ↔ T x〈D〉]
P hasValue b ∃y(y = b) ∧ T x,y〈p〉

Table 2: Some OWL Class Constructors and their translation
in FOL following

tions in a nested manner. For example the DL expression like

C ≡ D � E � F �G

is translated to the following set of descriptions

C ≡ A3, A1 ≡ D � E,A2 ≡ A1 � F,A3 ≡ A2 �G

The reader may note, that this translation does not alter the speci-
fied semantics.

4.1 Translation to FOL
Borgida [3] showed how a prototypical description logic DL,

which is a superset of OWL, can be correctly translated into first
order logic (FOL). Table 4.1 provides the appropriately adopted
translation for OWL class expressions. In order to provide a trans-
lation for cardinality constraints [3] extends the syntax of FOL with
counting quantifiers to map those DL constructors. The reader may
note, that an alternative mapping to the unmodified FOL is possible
using inequalities, but would lead to a more general subset of FOL
than intended by [3].

The above mentioned translations are formula of FOL. Hence,
the results cannot be directly transferred to Logic Programming
environments, since only a subset of FOL is allowed there. The
following sections discuss which fragment can be translated to LP.
To proceed we first introduce our notion of LP.

4.2 Characterization of logic programming
Logic Programming is the language of first-order Horn clauses

often extended with a closed-world negation and arithmetic predi-
cates. The reader may note that the Horn clause form involves only
universally quantified variables.

The basic elements of the language are predicates and terms.
Terms can be either constant symbols such as names (so-called
atomic values) and numbers (integer, float ...) or logical variable
symbols. Usually variables and constants are distinguished by syn-
tactic convention. In the following all variables will start with an
upper-case letter. Each logical variable is a placeholder for another
value, which can be instantied by substituting it by another term.
However, it cannot be assigned directly.

Logic programs are composed of goals, queries and implications
(also called clauses). Goals are syntactically represented by a pred-
icate:

P (T1, ..., Tn) (3)

This states that predicate P is true of terms T1 and all other Ti.
Queries are syntactically represented as a set of goals:

E1, E2, ..., En (4)

This retrieves all Ei. Clauses are syntactically written like impli-
cations in Prolog:

E0 : −E1, ..., En. (5)

This means, that E0 must be true, if all Ei are also true. E0 is also
called the head of the clause, while the remaining Ei are called the
body of the clause. The body of the clause may be empty. Then
the clause is called a fact. The clause is also referred to as a rule
if the body is nonempty. We speak of recursive rules if a predi-
cate appears in both the head and the body of a rule. Each rule
corresponds to a FOL formula, where all occuring variables are
universally quantified. This forumla contains a single implication
between body and head. The body itself is translated to a conjunc-
tion of literals. For example, the rule E0(X,Y) : −E1(X), E2(Y)
corresponds to the following FOL formula

∀X,Y : (E1(X) ∧ E2(X))→ E0(X,Y)

4.3 Handling existentials
Many translations of OWL descriptions involve existential quan-

tification. To implement existential quantification, a procedure called
Skolemization must be applied.

Skolemization is a syntactic transformation routinely used in au-
tomatic inference systems in which existential variables are replaced
by ’new’ functions applied to universal variables appearing in front
of the existential quantifier of the variable. If the original formula
is satisfiable, then so is the skolemized formula.

4.4 Handling equivalence
Many translations of OWL descriptions require the use of equiv-

alence. However, an equivalence predicate is usually not available
in Logic Programming environments. We therefore have to provide
such a predefined predicate and must establish the correct seman-
tics. This behavior may be realized by capturing the five axioms
of the equivalence. Reflexivity, Symmetry and Transitivity ensure
that the equality predicate possess the algebraic properties of equiv-
alence relation:

= (x, x) ← (6)

= (x, y)←= (y, x) (7)

= (x, z) ←= (x, y),= (y, z) (8)

The axioms of substitutivity ensures the correct semantics of equiv-
alence when function and predicate symbols, e.g. when

= (c, d) ∧Q(c)

holds, then also Q(d) for all predicates Q.

= (f(x1, .., xn), f(y1, .., yn))← {= (xi, yi)|1 � i � n} (9)

Q(x1, .., xn)← Q(y1, .., yn) ∪ {= (xi, yi)|1 � i � n} (10)

[7] shows that such an axiomatization renders exactly the same se-
mantics as the built-in predicate = in FOL. The reader may note that
the axioms of substitutivity have to be instantiated for all predicates
Q and functions f used in the rule base.

5. TRANSLATION TO LP

5.1 OWL Lite - RDF Schema Features
This section derives an horn clause axiomatization (suitable for

logic programming systems) for the RDF Schema features of OWL
Lite [11]. In correspondence to OWL, we focus only on the domain

modelling capabilities of RDF Schema and, e.g., don’t deal with
the definitions that create new metaclasses by defining subclasses
of rdfs:Class.

The two basic modelling primitives provided are classes and
properties. As detailed in section 3, Classes are represented as
unary predicates, properties are represented as binary predicates.

The domain modelling part of RDF Schema consists of four ad-
ditional primitives, namely

• rdfs:subClassOf: For each (C rdfs:subClassOf
D) relationship an implication is generated, making explicit
that each instance of C is also an instance of D. The fol-
lowing rule pattern expresses the rdfs:subClassOf re-
lationship for two classes C and D.

D(X) : −C(X). (11)

• rdfs:subPropertyOf: For each (M rdfs:subProp-
ertyOf N) statement the following rule pattern is instan-
tiated, explicating the subset relationship between the rela-
tion N and M .

N(X,Y) : −M(X,Y). (12)

• rdfs:domain: A (P rdfs:domain C) statement in-
dicates that the domain of a property P is of a particular class
C. Given an property P (a, b), it follows that the a is an in-
stance of class C. The following rules captures the semantics
of rdfs:domain

C(X) : −P (X,Y). (13)

• rdfs:range: A (P rdfs:range C) statement indi-
cates that the range of a property P is of a particular class C.
Analogous to rdfs:domain the following rules captures
the semantics of rdfs:range

C(Y) : −P (X,Y). (14)

5.2 OWL Lite equality and inequality
This section provides the translation for the different means in

OWL to define equalities and inequalities for classes, properties
and individuals.

5.2.1 Equality of classes and properties
Equality of classes and properties in OWL can be established by

different means. One possibility is to establish equality by provid-
ing via cyclic rdfs:subClassOf and rdfs:subPropertyOf
definitions. There is not further need to investigate this possibility,
since the translation of the rdfs:subClassOf and rdfs:sub-
PropertyOf definitions are already sufficient to reflect the se-
mantics. The other in OWL and OWL Lite to define equality of
classes and properties are the following:

• owl:sameClassAs: For each (C owl:sameClassAs
D) the following rule pattern is instantiated:

D(X) : −C(X). (15)

C(X) : −D(X). (16)

The two rules realize equality by establishing a circular sub-
class definition.

• owl:samePropertyAs: For each (M owl:same-
PropertyAs N) the following rule pattern is instantiated:

N(X,Y) : −M(X,Y). (17)

M(X,Y) : −N(X,Y). (18)

Analogous to the owl:sameClassAs case, the two rules
realize equality by establishing a circular subProperty defini-
tion.

5.2.2 Disjointness of classes
The pairwise disjointness of two classes can be expressed using

the owl:disjointWith constructor. It guarantees that there ex-
ists no individual that is member of both classes. The following rule
pattern captures this:

inconsistent(X,X) : −D(X), C(X). (19)

5.2.3 Equality and inequality of individuals
Equivalence of individuals is established via the owl:same-

IndividualAs primitive. For the purpose of readability we will
use the symbol = to refer to this primitive, which constitutes an
equivalence relation over individuals, such as defined in section 4.4.

To be able to handle skolem functions correctly, additional rules
have to be introduced for each skolem function symbol that occurs.
For each skolem function symbol f of arity n, a rule as described
in section 4.4 needs to be added.

Equivalent individuals are also part of the classes and properties.
To handle the extensions correctly the following nodes are required
for a classes and properties following the p-substitutivity axiom.

• Class membership:

C(X) : −C(Y),= (X,Y). (20)

• Property membership:

P (X,Z) : −P (X,Y),= (Y, Z). (21)

P (Y, Z) : −P (X,Z),= (X,Y). (22)

The owl:differentIndividualFrom primitive is used to
denote that two individuals are not the same, hence we use the
symbol �= as a convenient notation. Since OWL may infer that
some individuals may be the same, an may inconsistency arises, if
owl:sameIndividualAs and owl:differentIndividual-
From can be derived for the same two individuals. This is captured
by the following rule:

inconsistent(X,Y) : − �= (X,Y),= (X,Y). (23)

5.3 Property Characteristics
OWL Lite allows to state property characteristics. Syntactically

the properties that are subject of those additional characteristics are
represented as subclasses of owl:ObjectProperties. The
class owl:ObjectProperty is in turn a subclass of rdf:Prop-
erty. These statements are part of the metalanguage of OWL
Lite and treated like rdf:Property via binary predicates in the
database and unary predicates to capture the property membership.

5.3.1 Unary Property Characteristics
However, depending on if a property P is defined to be transitive

or symmetric, further rule patterns are instantiated for p, formaliz-
ing the properties of a transitive or symmetric property.

• owl:TransitiveProperty:

P (X,Z) : −P (X,Y), P (Y, Z). (24)

• owl:SymmetricProperty:

p(X,Y) : −P (Y,X). (25)

5.3.2 Binary Property Characteristics
OWL Lite allows to specify that the values of two owl:Object-

Properties are inverse to each other, using the (P owl:inv-
erseOf R) primitive. Hence the semantics of all (p owl:inv-
erseOf r) statements has to be captured via the instantiation of
the following rule patterns :

R(X,Y) : −P (Y,X) (26)

P (X,Y) : −R(Y,X) (27)

Functional properties are properties that are stated to have a unique
value. If a property is a owl:FunctionalProperty, then it
has no more than one value. It may have no values. Another way
of saying this is that the property’s minimum cardinality is zero and
its maximum cardinality is 1. The consequence is that if two values
of p exists they must be identical. This can be represented in Horn
clauses as follows:

= (X,Y) : −p(A,X), p(A, Y). (28)

Hence, it is entailed that X and Y must be equivalent instances.
If there is a statement, which declares them to be different from
each other, the knowledge base is in an inconsistent state.

A property of type owl:InverseFunctionalProperty6

is a subclass of owl:ObjectProperty. If a property is of this
type, then the inverse of the property is functional - that means the
inverse of the property has at most one value.

This can be represented in Horn clauses by the following rule
pattern:

= (X,Y) : −P (X,A), P (Y,A) (29)

Hence, it is entailed that X and Y are equal. If there is a statement,
which declares them to be different from each other, the knowledge
base is inconsistent.

5.4 Representation of predefined OWL classes

Thing. The predefined class Thing can be represented by the fol-
lowing rule:

Thing(X) : −. (30)

Nothing. The predefined class Nothing can be represented by the
following rule:

Nothing(X) : − �= (X,X). (31)

Nothing per default has an empty extension. Every user defined
class subsumes Nothing.

The following rule captures that a consistency follows, if an in-
stance somehow shows up in nothing:

inconsistent(X,X) : −Nothing(X). (32)

5.5 Class constructors
Class constructors may be nested, hence the translation must be

carried out in a recursive manner. The are applied in a recursive
manner as described in table 4.1. Whenever a OWL primitive ap-
pears in such a nesting, the right hand side of the translation is
applied.

This approach is problematic with respect to LP systems, since
we cannot control, where such a substitution happens and horn-
clauses impose certain restrictions. The following paragraphs will
6This type of property was previously called unambiguous property
and IsTheOnlyOne property.

explore the behaviour of each OWL class constructor with respect
to the limitations of Horn-Clauses and show thereby which con-
structors can be supported.

5.5.1 owl:hasValue

The owl:hasValue primitive allows to define a class via a
certain property value. It can be supported as follows. Let v the
value of property P , which constitutes the class C, then the follow-
ing rule pattern can capture this semantics:

C(X) : −P (X, v). (33)

P (X, v) : −C(X). (34)

hasValue does not impose any difficulties wrt. to Horn clauses,
since the substitution P(X,v) which is inserted for any definition
of C(X) may happen both in the head of a rule (as it occurs when
subclassOf is the previously applied translation) and in the body (as
it occurs when equivalence is applied).

5.5.2 Cardinality Constraints
OWL means to restrict the cardinality of properties when used on

certain classes. The values for such cardinalities are restricted to the
values 0 and 1 in the case of OWL Lite. The owl:cardinality
construct is a convenience constructor for setting both owl:min-
Cardinalty and owl:maxCardinality to the same value.

Defining a property to have a owl:maximumCardinality
of 1 expresses that a property is functional. It is therefore translated
to the instantiation of the rule pattern stated for owl:Functional-
Property (see rule 28).

A owl:Cardinality value of 0 for a property p on class C
means that a property may not be instantiated. Hence an inconsis-
tency follows from having any property value on p:

inconsistent(X,Y) : −p(X,Y). (35)

The class therefore also corresponds to the predefined class Noth-
ing, whose extension is per default empty.

Nothing(X) : −C(X). (36)

C(X) : −Nothing(X). (37)

A owl:minimumCardinalty of 1 states that for all domain
values of that property there is at least one range value. Expressing
the owl:minimumCardinalty constraint in predicate logic re-
sults in the following formula:

∀X∃Y : P (X,Y) (38)

The formula is using an existential quantifier, which is not directly
expressible using Horn logic. However, using a skolem function
produces the same effect.

p(X, f(X)). (39)

Please note that for each constraint a ”fresh” skolem function needs
to be used, since otherwise unintentional equalities could follow.
Hence, this equation may safely occur in both the body and head
of rule (which occurs in case of equivalence), when the rule is ex-
panded out during the recursive translation process.

Unrestricted Cardinality. The unrestricted use of cardinality
constraints can not be supported efficiently in Logic Programming
environments, since it involves counting using inequalities. The ba-
sic technique follows from the restricted min- and maxcardinality
cases shown above. To support a minimal cardinality n, we must

create a new skolem functions for the missing values but take care
of all occuring values. To support maxcardinality, we must cre-
ate new equality assignments if the specified boundary has been
broken. this involves to take into consideration all present values.
However, we could not yet prove the validity of our idea, since the
procedure breaks out of the frame given by [3], who uses counting
quantifiers which are not present in logic programming. Hence, we
do not support unrestricted cardinality for the time being.

5.5.3 Local range restrictions
A property on a particular class may have a local range restriction

associated with it. There are two kinds of local range restrictions:

• owl:allValuesFrom: This means that if an individual
instance of the class is related by the property to a second
individual, then the second individual can be inferred to be
an instance of the local range restriction class.

May C be the local range restriction on property P for class
D. This can be captured via rules of the following form

C(Y) : −P (X,Y), D(X). (40)

• owl:someValuesFrom: This means that a particular class
may have a restriction on a property that at least one value for
that property is of a certain type. It can be captured in first-
order logic as follows.

∀X∃Y : C(Y) ∧ P (X,Y) ← D(X) (41)

= ∀X∃Y : (P (X,Y) ∧ C(Y) ∨ ¬D(X)) (42)

= ∀X∃Y : (C(Y) ∨ ¬D(X)) ∧ (P (X,Y) ∨ ¬D(X)) (43)

= ∀X∃Y : (C(Y) ← D(X)) ∧ (P (X,Y) ← D(X)) (44)

The last formula can be skolemized again - this leads to two clauses

C(f(X)) : −D(X). (45)

P (X, f(X)) : −D(X). (46)

Please note that again for every owl:someValuesFrom a new
skolem function is required.

5.5.4 Set construction of classes

Conjunction. The conjunction of classes (D ≡ C1 � C2) can
be easily supported easily via the following rule pattern:

D(X) : −C1(X), C2(X). (47)

C1(X) : −D(X). (48)

C2(X) : −D(X). (49)

Disjunction. Disjunction of classes is problematic since disjunc-
tion disjunction in the consequent of the rule, which can not be
provided by a Horn clauses, can occur in the case of equivalence (
D ≡ C1 " C2).

For the D # C1 " C2 direction the following rule pattern is
instantiated:

D(X) : −C1(X). (50)

D(X) : −C2(X). (51)

However the other direction no Horn clause can be stated, since
disjunction in the head would occur, such as captured by the fol-
lowing FOL formula:

∀X : C1(X) ∨ C2(X) ← D(X) (52)

Class Complement. OWL features the complementOf primi-
tive, which cannot be implemented in Horn Logics due to the fact,
that there may be no negation in the head, since even the subClas-
sOf substitution for the class construct can not be transformed dur-
ing the recursive translation. The inability to support equivalence
follows directly from this situation.

5.5.5 Construction of classes by enumeration
The owl:oneOf primitive can be partially supported. To state

the class of the individuals listed in the argument of the owl:oneOf
primitive, for each member ai of the primitive a fact is generated:

C(ai). (53)

To support the other direction (which states that every instance
of C is one of the listed ai the following formula is required:

∀X C(X) →= (X, a1) ∨ · · · ∨ = (X, an). (54)

Unfortunately axiom 54 requires a disjunction in the consequent
of the rule, which can not be provided by a Horn clauses.

5.6 Supporting terminological queries
As mentioned in the introduction, DLs support the following set

of queries: (I) whether a description E subsumes D, this is the case
iff for every interpretation I, DI ⊆ EI . (II) whether a description
D is coherent/satisfiable, this is the case if there is at least one I
such that DI �= ∅, and (III)whether descriptions E and D are dis-
joint, this is the case iff for every interpretation I, DI ∩ EI = ∅.
As those queries are concerned with every possible interpretation I,
we may simulate those queries by inserting hyptothetical (unique)
inidividuals. Checking if C subsumes D only requires to intro-
duce a new individual i, assert C(i), and see wether D(i) follows.
Checking the equivalence, corresponds to doing this simulation in
both directions. The classes are disjoint if neither direction fol-
lows. Satisfiability of classes is guaranteed since we cannot gener-
ate any contradictions with the class constructors expressible in the
above frame. The only situation where this could happen, would
be if Nothing is involved in the conjunction of classes. However,
once any instance of Nothing is created the inconsistency predicate
would hold a value. If we apply the above strategy, and the newly
inserted instance would show up in the extension of the inconsistent
extension, then a class is not satisfable.

6. TRANSLATION TO DATABASES
After having established the OWL/LP fragment in the previous

section, we will take a closer look to the fragment of OWL which
can be implemented on top of standard relational databases. Luck-
ily, Logic Programming is also an elegant language for data-oriented
problems, for example it allows to obtain languages equivalent to
known database languages by making various syntactic restrictions.
One language that can be obtained by such restrictions is Datalog,
which underlies deductive databases. Compared to logic program-
ming Datalog makes the following restrictions.

1. range restriction: all variables in the head of a rule must oc-
cur in at least one of the body predicates. This guarantees that

rules are strongly safe if the underlying body predicates are
safe. A predicate is safe, if it is finite. The range restriction
mainly guarantees that queries and rules can be computed in
a bottom-up manner, as it is done in databases.

2. function symbols with arity > 0 are excluded.

6.1 Effects of datalog restrictions

Range restriction. With respect to range restrictions, two rules
are effected: (Rule 6) the reflexivity of equivalence and (Rule 30)
the representation of Thing, which is the top most class. However,
we can find equivalent variants of these rules by adding an unary
predicate resource(X), which contains all RDF resources and rely-
ing on this predicate for the definition of the above rules.

= (X,X) : −resource(X). (55)

Thing(X) : −resource(X). (56)

Please note, that this requires to change the RDF representation
proposed in section 3 to populate the resource predicate accord-
ingly.

Lack of function symbols. This obviously drops the rule for
f-substitutivity. In theory we could simulate skolemization by gen-
eration of artificial and unique uris. This requires to implement
such a facility, e.g. as a stored procedure in the database. However,
this is not a logical characteristic of the Datalog model, hence it
will be very difficult to proof the correctness of that approach wrt.
to the logic. As a consequence, the existential local range restric-
tion (Rules 45 and 45) , minimum cardinalities (Rule 39) are not
supported in our database implementation.

6.2 Translation to relational databases
Datalog programs can be implemented on top of relational databases.

To perform this implementation all explicit facts of a predicate p are
stored in a dedicated table pext. All non-recursive rules are trans-
lated to relational views. Rule bodies are translated to appropriate
SQL queries (usually operating on other views). To obtain all ex-
plicit and implicit information, a view is defined to represent each
predicate p. The query of the view integrates the explicit infor-
mation, found in pext with the queries that represent the bodies of
those rules, where p is the head. The interested reader may refer to
[17] for an in-depth description, algorithm and proof. Intuitively,
this result follows from the following substitutions:

• Each Datalog-rule can be simulated using the select-from-
where construct of SQL.

• Multiple rules defining the same predicate can be simulated
using union.

• Negation in rule bodies can be simulated using not in

To compute the answer for user queries the translated views are
used. This realizes a form of Bottom up processing, since the
queries involved in view definitions are performed on the exten-
sional data and intermediate results are propagated up to a final
query, which is the user query. Notably, many irrelevant facts are
computed in the intermediate steps, however more efficient proce-
dures based on sideways information passing have been developed
in the deductive database literature.

However, the above mentioned strategy is not possible for recur-
sively defined rules. Here additional processing is required.

6.3 Handling recursion
Modern relational database systems, which support the SQL:99

standard, can process some limited form of recursion, namely lin-
ear recursion with a path length one. Hence, the predicate used as
the rule head may occur only once in the rule body. Cycles other
than such linear self-references can also not be implemented.

Usually, binary recursive rules such as transitivity can be rewrit-
ten into a linear form. E.g. a transitive predicate like Transitive-
Property (Rule 24) can be rewritten into

P (X,Y) : −PExt(X,Y). (57)

P (X,Z) : −PExt(X,Y), P (Y, Z). (58)

The equality issue. However the rewriting can not be done in
our case due to the p-substitutivity axiom of equivalence, where
all predicates are already linearly associated with themselves. As
mentioned above multiple rules with the same head are simulated
by union, hence only one possibility for linear recursion exists and
is always taken by the p-substitutivity axiom of equivalence.

The usual strategy to compute the remaining forms of recursive
rules in relational databases is in-memory processing using some it-
erative strategy, e.g. the magic template procedure [13]. However,
the constitution of sameIndividualAs in OWL leads to the neces-
sity to always use this strategy for the complete knowledge base.
Apparently, this somehow nullifies the use of database query lan-
guages as a host language altogether and makes efficient processing
of large volumes of instance data questionable.

We therefore decided to drop sameIndividualAs in our database
implementation. As a consequence all OWL constructs, where new
instance equality is deduced such as Functional- and InverseFunc-
tionalProperties are not supported. Additionally primitives which
are logically justified only by the existance of instance equality,
such as differentIndividualFrom, are not supported.

F

C

D

E

W

X

Z

Y

W

X

Z

Y

F

C

D

E

Figure 5: Cyclic Reference Removal

Indirect Recursion. The remaining cases of non-linear recur-
sion that cannot be rewritten into the SQL:99 constructs are mainly
represented by the possibility of having cyclic class and property
hierarchies. However we can translate this case into the database by
exploiting the observation that this form of recursion decomposes
into unions, since no join processing of intermediate results such as
involved in computing the transitive closure in TransitiveProperty

are necessary. This is immediately clear for classes, since they are
monadic predicates. A closer look at all axioms where binary pred-
icates (properties) are in the head reveals the same. Hence, these
cyclic references can be implemented via an algorithm that detects
equivalence classes (each constituted by a cycle) in graphs. All
incoming edges to an equivalence class must be duplicated to all
members of the equivalence class, such as done in Figure 5. This
may done by using a new intermediate predicate to collect the in-
coming edges and deriving the members of the equivalence class
from this intermediate predicate. Afterwards all rules that consti-
tute the cyclic references within the equivalence class may safely be
removed. The reader may note that this can also be performed with
appropriate adaptions on the cyclic references imposed by inverse
properties.

Figure 6: Bubo Online web service

7. IMPLEMENTATION
We have implemented the discussed OWL subsets on top of rela-

tional databases and on top of XSB. The implementation is named
after the Latin name of the biological genus of eagle owls: bubo.
Bubo is a prototypical implementation of the discussed OWL sub-
sets. It is freely available at http://km.aifb.uni-karlsruhe.de/owl/.
We also host an online service (cf. Figure 6) that allows to reason
over all online OWL ontologies that meet the restrictions discussed
in section 4.

Bubo consists of four central components (cf. Figure 7) which
are described in the following. Two alternative implementations are
provided, one utilizing XSB [15] as a prolog engine, the other DB2
as a SQL:99 compliant database. In this way, implementations of
the OWL/LP fragment and the OWL/Datalog fragment are offered.

The Rule Compiler generates the appropriate XSB logic pro-
gram and the respective database view definitions from a given
source ontology. All ground facts are stored in separate predicate
to allow their combination with the ground facts retrieved from the
integrated database content.

The View Definitions are specified by the user to map given

View-Definitions

OWL Definition

Rule Compiler

Rule base

Data Weaver

View-enriched DB
Integrated

Data/Rule

Base

Query API

Source Database

XSB

DB2

XSB

DB2

XSB

DB2

XSB

DB2

Alternative

Implementations

Figure 7: Bubo Architecture

source data to extensions of the ontology. At the moment, two
types of views are allowed, binary views to populate properties (cf.
Section 3) and unary views to populate classes. The users must fol-
low a defined naming pattern to allow the Data Weaver to recognize
the defined views.

The Data Weaver merges the instance data defined in the ontol-
ogy with the data integrated from relational source databases. For
XSB this is done via the built-in tuple interface that can be used to
retrieve data from databases with the XSB-ODBC module. To do
that, the appropriate connections to the source databases are opened
(by appending the required statements to the translated rule base).
All views defined by the user in the view definition component are
bound as XSB predicates using the ODBC import statement:

?- odbc_import(’PropertyView’(’DOMAIN’,
’RANGE’),’PropertyView’).

?- odbc_import(’ClassView’(’INSTANCE’),
’PropertyView’).

This data is then combined with the instance data provided in the
ontology definition via simple additional rules:

P(X,Y) :- P_Onto(X,Y).
P(X,Y) :- P_Db(X,Y).
C(X) :- C_Onto(X).
C(X) :- C_Db(X).

The DB2 implementation conceptually follows this approach.
However, due to the implementation on the native database, we
do not need to import the defined views. The integration of data

defined in the ontology and found in the database is done through
another view definition:

CREATE VIEW P(X,Y) AS
(
(SELECT * FROM P_Onto)
UNION ALL
(SELECT * FROM P_DB)
)

The Query API provides predefined operations for the standard
DL queries, lists available properties and classes and allows read
access to data through the query languages offered by XSB and
DB2 SQL respectively. All queries operate on the integrated data-
and rule-base that is generated by the Data Weaver.

8. RELATED WORK
An axiomatization of DAML+OIL, the precursor of OWL, was

given by McGuinness and Fikes [5]. There are a number of conse-
quences of the axiomatization that are not obvious from the lan-
guage, which is given in KIF and therefore not directly imple-
mentable in LP-based systems. It can rather be interpreted by the-
orem proofers. The axiomatization has not been updated to meet
changes made to OWL, for example the definition of Symmet-
ricProperty.

Three systems try to implement OWL using a LP-based approach:
The Euler Proof Mechanism [14] by Jos De Roo of Agfa and Tim
Berners-Lee’s Closed World Machine (CWM) [2] correspond very
closely and use the same syntactic format for rules. However both
do not consider data integration. They try to axiomatize every-
thing, whereas we try to rely on the features of logic itself, such
as implication to operationalize the transitivity of subclassof. Their
axiomatization is not proven to be correct or complete, e.g. they do
not capture the substituivity of sameIndividualAs and capture only
one direction of hasValue. There is no formaly proven characteri-
zation of the inference algorithms employed by Euler and CWM.
So it is unclear what they are actually doing. On the opposite Horn
logic has been well investigated and many optimization methods
for evaluation exist in the literature. The DAML XSB compiler
[18] derives its axiomatization from [5] and uses XSB to imple-
ment DAML+OIL reasoning. Obviously, some KIF rules can not
be captured, such as Ax 105 and Ax 128 of [5] The current version
is slightly outdated and incomplete, e.g. with respect to equiva-
lence.

Our approach is very close to the work of Grosof and Horrocks,
which produced a document called Description Rules in context of
the DAML programme. However, the document is still in draft ver-
sion and presents preliminary findings. They consider an extended
logic programming language, with a built-in equivalence predicate
and do not discuss how this correlates to existing implementations,
which do not sport that feature. Their approach is less complete,
but is conceptually similar, since they also follow the translation
approach proposed by [3]. However, their translation is less com-
plete, e.g. e.g. cardinality axioms are not suggested. Also, they
do not discuss how the approach may be used in conjunction with
available database technology.

Last but not least several papers presented a translation of de-
scription logics to first-order logic, such as [3] and [16]. Both
approaches translate a description logics into FOL, which is not
directly implementable in logic-programming environments.

9. CONCLUSION
We have presented the OWL subset which can safely and con-

sistently be represented in logic programming environments. We

have additionally shown, how this translation can be used to derive
a translation for relational databases by following the restrictions of
the Datalog paradigm with respect to the full Logic Programming
paradigm.

Our future work mainly resolves around a more detailed look at
cardinality constraints > 1 and coming up with an alternative se-
mantics for the aspects of OWL, which intuitively state constraints,
such as cardinality or functionality of properties. We expect that
many people coming from a database and object-oriented program-
ming community will find those semantics more natural. We are
currently working on trying to find the correspondences between
such a constraint semantics and the DL semantics that entails ad-
ditional equalities to meet specified constraints. Another future
topic will be the evaluation and adaption of optimization techniques
known for processing logic programs for this special subset of logic
programming which centers around unary and binary predicates.
We expect that a rule extension in the Semantic Web will largely
stay in this framework, hence efficient optimizations for this spe-
cial type of horn clauses may be achievable.

We also want to investigate how logic programming systems
could interact more closely with DL reasoners realizing hybrid rea-
soning schemes by performing efficient T-Box reasoning on the DL
reasoner side and efficient A-Box reasoning on the LP side. An-
other important topic not investigated yet will be the support for
XML datatypes such as recently drafted by the W3C for both RDF
and OWL. Obviously, we will again try to reuse as much machinery
as possible from the underlying implementations.

Acknowledgements. We thank Ian Horrocks, Boris Motik, and
Steffen Staab for their feedback on previous versions of the paper.

10. REFERENCES
[1] Rakesh Agrawal, Amit Somani, and Yirong Xu. Storage and

querying of e-commerce data. In The VLDB Journal, pages
149–158, 2001.

[2] Tim Berners-Lee. Cwm - close world machine. Internet:
http://www.w3.org/2000/10/swap/doc/cwm.html, 2002.

[3] Alexander Borgida. On the relative expressiveness of
description logics and predicate logics. Artificial
Intelligence, 82(1-2):353–367, 1996.

[4] Weidong Chen, Michael Kifer, and David Scott Warren.
HILOG: A foundation for higher-order logic programming.
Journal of Logic Programming, 15(3):187–230, 1993.

[5] R. Fikes and D. McGuiness. An axiomatic semantics for rdf,
rdf schema and daml+oil. Technical Report KSL-01-01,
KSL, Stanford University, 2001.

[6] Volker Haarslev and Ralf Moller. Description of the RACER
system and its applications. In DL2001 Workshop on
Description Logics, Stanford, CA, 2001.

[7] Steffen Hoelldobler. Foundations of Equational Logic
Programming, volume 353 of LNAI. Springer, 1987.

[8] Ian Horrocks, Ulrike Sattler, and Stephan Tobies. Practical
reasoning for expressive description logics. In Harald
Ganzinger, David McAllester, and Andrei Voronkov, editors,
Proceedings of the 6th International Conference on Logic for
Programming and Automated Reasoning (LPAR’99), number
1705, pages 161–180. Springer-Verlag, 1999.

[9] Michael Kifer, Georg Lausen, and James Wu. Logical
foundations of object-oriented and frame-based languages.
Technical Report TR-90-003, 1, 1990.

[10] O. Lassila and R. Swick. Resource description framework
(RDF) model and syntax specification. Internet:

http://www.w3.org/TR/REC-rdf-syntax/, 1999.
[11] D. McGuinness and F. van Harmelen. Feature synopsis for

owl lite and owl. W3C Working Draft 29 July 2002, Internet:
http://www.w3.org/TR/owl-features/, 1999.

[12] Mike Dean, Dan Connolly, Frank van Harmelen, James
Hendler, Ian Horrocks, Deborah L. McGuinness, Peter F.
Patel-Schneider, and Lynn Andrea Stein. Owl web ontology
language 1.0 reference. Internet:
http://www.w3.org/TR/owl-ref/.

[13] R. RAMAKRISHNAN. Magic templates: A spellbinding
approach to logic programs. J. Logic Programming,
11:189–216, 1991.

[14] Jos De Roo. Euler proof mechanism. Internet:
http://www.agfa.com/w3c/euler/, 2002.

[15] K. Sagonas, T. Swift, and D. S. Warren. Xsb as an efficient
deductive database engine. In R. T. Snodgrass and
M. Winslett, editors, Proc. of the 1994 ACM SIGMOD Int.
Conf. on Management of Data (SIGMOD’94), pages
442–453, 1994.

[16] J. Schmolze and D. Israel. KL-ONE: semantics and
classification. Technical Report 5421, BBN Laboratories,
1983.

[17] Jeffrey D. Ullman. Principles of Database and
Knowledge-base Systems, volume 1. Computer Science
Press, 1988.

[18] Youyong Zou. Daml xsb interpretation. Version 0.3, Internet:
http://www.cs.umbc.edu/ yzou1/daml/damlxsb.P.txt, January
2001.

APPENDIX

A. OWL/LP REPRESENTATION OF THE
GENEALOGY ONTOLOGY

Thing(X) :- .
=(X,X) :- .
Animal(X) :- Animal(Y),=(X,Y)
Animal(X) :- Person(X).
Animal(X) :- Male(X).
Animal(X) :- Female(X).
Person(X) :- Person(Y),=(X,Y)
Person(X) :- Man(X).
Person(X) :- Woman(X).
Person(X) :- hasParent(Y,X), Person(Y).
Male(X) :- Male(Y),=(X,Y).
Male(X) :- Man(X).
Female(X) :- Female(Y), =(X,Y).
Female(X) :- Woman(X).
Woman(X) :- Woman(Y), =(X,Y).
Man(X) :- Man(Y), =(X,Y).
inconsistent(X,X) :- Male(X),Female(X).
inconsistent(X,Z) :- inconsistent(X,Y), =(Y,Z).
inconsistent(X,Y) :- =(X,Y), !=(X,Y).
hasParent(X,Y) :- childOf(Y,X).
hasParent(X,Y) :- hasMother(X,Y).
hasParent(X,Y) :- hasFather(X,Y).
hasParent(X,Z) :- hasParent(X,Y), =(Y,Z).
childOf(X,Y) :- hasParent(Y,X).
childOf(X,Z) :- childOf(X,Y), =(Y,Z).
hasMother(X,Z) :- hasMother(X,Y), =(Y,Z).
hasFather(X,Z) :- hasFather(X,Y), =(Y,Z).

B. OWL/DB REPRESENTATION OF THE
GENEALOGY ONTOLOGY

CREATE VIEW Thing(X) AS (SELECT * FROM Resource(X))
CREATE VIEW Man(X) AS (SELECT * FROM Man_Ext)
CREATE VIEW Woman(X) AS (SELECT * FROM Woman_Ext)
CREATE VIEW hasFather(X,Y) AS (SELECT * FROM hasFather_Ext)

CREATE VIEW hasMother(X,Y) AS (SELECT * FROM hasMother_Ext)
CREATE VIEW hasParent(X,Y) AS
((SELECT * FROM hasParent_Ext)
UNION ALL
(SELECT * FROM hasFather)
UNION ALL
(SELECT * FROM hasMother)
UNION ALL
(SELECT childOf_Ext.Y as X, childOf_Ext.X as Y
FROM childOf_Ext))

CREATE VIEW childOf(X,Y) AS
((SELECT * FROM childOf_Ext)
UNION ALL
(SELECT hasFather.Y as X, hasFather_Ext.X as Y
FROM hasFather)

UNION ALL
(SELECT hasMother.Y as X, hasMother.X as Y
FROM hasMother)
UNION ALL
(SELECT hasParent_Ext.Y as X,hasParent_Ext.X as Y
FROM hasParent_Ext))

CREATE RECURSIVE VIEW Person(X) AS
(((SELECT * FROM Person_Ext)
UNION ALL
(SELECT * FROM Man)
UNION ALL
(SELECT * FROM Woman))
UNION ALL
(SELECT hasParent.Y as X
FROM hasParent, Person
WHERE hasParent.X = Person.X))

CREATE VIEW Male(X) AS (
(SELECT * FROM Male_Ext) UNION ALL (SELECT * FROM Man))
CREATE VIEW Female(X) AS (
(SELECT * FROM Male_Ext) UNION ALL (SELECT * FROM Man))
CREATE VIEW Animal(X) AS
((SELECT * FROM Animal_Ext) UNION ALL (SELECT * FROM Male)
UNION ALL
(SELECT * FROM Female) UNION ALL (SELECT * FROM Person))

