
FLOWS:
A First-Order Logic Ontology for Web Services

June 30, 2004

D.Berardi, M.Gruninger, R.Hull, S.McIlraith

June 30, 2004 SWSL's FLOWS 1

Outline
What is FLOWS? (Profile, Process Model, Surface Language)
• Representational Desiderata for a WSC ontology
• Pros/Cons of FOL

FLOWS Process Model
• The Process Specification Language (PSL)
• Issues: Relationship to OWL-S, Tractability

FLOWS Surface Language
– FLOWS Query Language
– FLOWS Specification Language

Issue: Implementations

Summary & Discussion

Supplementary material

June 30, 2004 SWSL's FLOWS 2

What is FLOWS?
FLOWS is:

a First-order Logic Ontology for Web Services

FLOWS comprises:
- FLOWS Profile
- FLOWS Process Model
- FLOWS Surface Languages

- FLOWS Query Language (FQL)
- FLOWS Specification Language (FSL)

June 30, 2004 SWSL's FLOWS 3

Representational Desiderata:
• Model-theoretic semantics

• Primitive and complex processes are first-class objects

• Taxonomic representation

• Leverages existing service ontologies (OWL-S)

• Embraces and integrates with existing and emerging standards and
research (BPEL, W3C choreography, etc.)

• Explicit representation of messages and dataflow (cf. W3C
choreography, behavioral message-based signatures, etc.)

• Captures activities, process preconditions and effects on world.

• Captures process execution history.

June 30, 2004 SWSL's FLOWS 4

Some Pros/Cons of FOL
+ provides a well-understood model-theoretic semantics
+ rich expressive power (e.g., variables, quantifiers, terms, etc.)

-- overcomes expressiveness issues that have haunted OWL-S
+ enables characterization of reasoning tasks in terms of classical notions of

deduction, consistency, etc.
+ enables exploitation of off-the-shelf systems such as existing FOL reasoning

engines and DB query engines.
- semi-decidable and intractable for many tasks (worst case) (tractability is not

about the language, but note that many intractable tasks often prove easily
solved in practice)

- syntax unsuitable for common man (surface languages under development)
+ provides a theoretical mechanism for preserving semantics and relating

different SWS ontologies
+ enables (easy) mapping to lite versions of ontology
+ provides basis for blending results about SWS origins in different

methodologies (e.g., automata-based, DL-based, Petri-net based, sitcalc-
based, etc)

+ easily incorporate pre-existing work. Can import other ontologies relatively
seamlessly

June 30, 2004 SWSL's FLOWS 5

Outline
What is FLOWS? (Profile, Process Model, Surface Language)
• Representational Desiderata for a WSC ontology
• Pros/Cons of FOL

FLOWS Process Model
• The Process Specification Language (PSL)
• Issues: Relationship to OWL-S, Tractability

FLOWS Surface Language
– FLOWS Query Language
– FLOWS Specification Language

Issue: Implementations

Summary & Discussion

Supplementary material

June 30, 2004 SWSL's FLOWS 6

FLOWS Process Model

• FLOWS Process Model consists of
– a subset of the PSL Ontology
– extensions for service concepts

This is not new research.
The bulk of this already exists and has been vetted.

… so here’s an overview of PSL….

June 30, 2004 SWSL's FLOWS 7

Process Specification Language (PSL)

• PSL is a modular, extensible first-order logic ontology
capturing concepts required for manufacturing and
business process specification
– PSL is an International Standard (ISO 18629)
– There are currently 300 concepts across 50 extensions of a

common core theory (PSL-Core), each with a set of first-order
axioms written in Common Logic (ISO 24707)

– The core theories of the PSL Ontology extend situation calculus
– PSL is a verified ontology -- all models of the axioms are

isomorphic to models that specify the intended semantics

June 30, 2004 SWSL's FLOWS 8

PSL Core Theories

June 30, 2004 SWSL's FLOWS 9

Some Structures in Models of PSL
subactivity activity tree timeline

o1
w

o2
do5

w

o6
d o8

d o3
w

o4
do7

d 09
d

a

d w

June 30, 2004 SWSL's FLOWS 10

FLOW Process Model Concepts
The FLOWS Process Model incorporates the following concepts and features from PSL:

• Ordering and temporal constraints
– Simple workflows
– Iterated processes
– Duration constraints
– Concurrency

• Explicit representation of state and state constraints
– World state conditions, inputs, and outputs, epistemic states of actors
– Preconditions and effects
– Conditional processes

• Occurrence constraints
• Composition

– Complex activities/services are first-class objects in the domain
– Process decomposition (e.g., subactivities)
– Nondeterminism (e.g. alternative processes)
– Interactions with external activities
– Incomplete process specifications.

June 30, 2004 SWSL's FLOWS 11

Pros/Cons of using PSL
+ years of development in the business process modeling arena
+ PSL is an International Standard, already proven useful as exchange

language
+ extensibility of PSL
+ first-stage characterization of OWL-S process model semantics
+ PSL was designed to support interoperability and a number of different

ontologies have been mapped into PSL.
+ PSL can consistently include ontologies for time and duration

(e.g. DAML-Time)
- readability and writability
- ignores continuous change (though situation calculus proposals exist)
- few implementations of associated reasoners. In particular, there is no

canonical implementation of PSL, since it is being used in different
ways in different applications

June 30, 2004 SWSL's FLOWS 12

Issue: Relationship to OWL-S

• FLOWS provides a first-order axiomatization of the
intended semantics of OWL-S.

• OWL is too weak to completely axiomatize the
intended semantics of OWL-S.

• Any implementations must resort to extralogical
mechanisms if they are to conform to the OWL-S
semantics, whereas implementations of FLOWS will
be able to use the axioms directly.

Complementary relationship to other emerging WS
standards (e.g., BPEL, WSDL). Formal characterization –
future work.

June 30, 2004 SWSL's FLOWS 13

Issue: Tractability

• Use case scenarios show that in general we will
need to solve intractable reasoning problems.

• Reasoning problems for semantic web services are
inherently intractable -- using a different language does not
make them tractable.

• If you restrict yourself to a language that is tractable, then
there will exist reasoning problems that cannot be specified
in the language.

• FLOWS enables identification and exploitation of
(pragmatically) tractable subclasses, while maintaining the
virtues of the full FLOWS ontology.

June 30, 2004 SWSL's FLOWS 14

Outline
What is FLOWS? (Profile, Process Model, Surface Language)
• Representational Desiderata for a WSC ontology
• Pros/Cons of FOL

FLOWS Process Model
• The Process Specification Language (PSL)
• Issues: Relationship to OWL-S, Tractability

FLOWS Surface Language
– FLOWS Query Language
– FLOWS Specification Language

Issue: Implementations

Summary & Discussion

Supplementary material

June 30, 2004 SWSL's FLOWS 15

June 30, 2004 SWSL's FLOWS 16

hotel_reservation_service =
select h
from h in UDDI,

hotel,person,d1,d2 in h.inputs
where hotel.type subclass_of Hotels and

person.type subclass_of String and
d1.type, d2.type subclass_of Date and
h.precond has_element_equiv 'val(d1) < val(d2)' and
h.precond has_element_equiv 'vacancy(val(hotel), val(d1), val(d2))' and
h.effect has_element_equiv '+hotel_res(val(hotel),val(person), val(d1), val(d2))'

FLOWS Query Language (FQL)
• We are working on a query language proposal inspired by

– PSL: basic objects are (atomic, composite) activities and
occurrences; tests, inserts, deletes of fluents “in the world”

– OWL-S: permit additional structure for activities, including IOPE
– OQL: functional query language for complex objects, extended and

relativized to the structures and operators in web services

• Example (simple) query in preliminary version of FQL

• Can exploit recursive structure of query components to
create intricate but natural queries, including compositions
– Can use quantifiers, but can express many things without them

FLOWS Specification Language (FSL)
• Purpose of the specification language is to provide the “common

man” with a language to describe service properties and capabilities
(the FLOWS profile and process model).

• FSL will use the vocabulary defined in the profile and process
ontologies to develop a surface language akin to FQL.

• This is future work, over and above what we will leverage from FQL.

June 30, 2004 SWSL's FLOWS 17

Outline
What is FLOWS? (Profile, Process Model, Surface Language)
• Representational Desiderata for a WSC ontology
• Pros/Cons of FOL

FLOWS Process Model
• The Process Specification Language (PSL)
• Issues: Relationship to OWL-S, Tractability

FLOWS Surface Language
– FLOWS Query Language
– FLOWS Specification Language

Issue: Implementations

Summary & Discussion

Supplementary material

June 30, 2004 SWSL's FLOWS 18

Issue: Implementations
• FLOWS can reuse existing implementations of PSL (see

attached slides)
• Golog programs are equivalent to process descriptions for

restricted classes of FLOWS activities.
– Any implementation of Golog can be used and

extended for FLOWS service descriptions. (Such
implementations exist in Prolog.)

• Mapping exists from finite state machine models to classes
of FLOWS processes
– Various tools available for (approximate) verification

• FQL gives framework to start working on distributed query
evaluation
– Can borrow algorithms, optimizations from DB literature

June 30, 2004 SWSL's FLOWS 19

Summary of FLOWS
• Designed on rigorous theoretical foundations
• Consistent extension of OWL-S (backwards

compatibility)
• Process model based on international standards

(ISO 18629)
• Proposed Surface Language based on

acccepted DB approaches to query languages
(OQL)

• Ability to reuse existing implementations from a
variety of applications

June 30, 2004 SWSL's FLOWS 20

Supplementary Material

In this slide deck:
• SWSL Case Studies

– Financial transaction example
– Travel service scenario

In a separate slide deck we provided:
• Further details on PSL

June 30, 2004 SWSL's FLOWS 21

Discussion?

June 30, 2004 SWSL's FLOWS 22

Supplementary Material…

June 30, 2004 SWSL's FLOWS 23

Case Studies

• Financial transaction example
• Travel service scenario

June 30, 2004 SWSL's FLOWS 24

Financial Transactions Use Case
• Embedding in PSL involves the following:

– Subactivities
– Partially ordered deterministic complex activities
– Precondition axioms

• Conditions on fluents that must hold before an activity can occur
– Context-sensitive effect axioms

• Effects of an activity occurrence can vary depending on fluents
– Classes of activities denoted by terms (with parameters)

• This capability not in OWL

• We illustrate how selected use-case assertions
can be expressed in PSL
– We rely on quantification over complex activities

June 30, 2004 SWSL's FLOWS 25

Financial Transactions:
Key Building Blocks
• Activities as terms

∀x activity(buy_products(x))
∀x,y,z activity(transfer(x,y,z))
∀x,y activity(withdraw(x,y))
∀x,y activity(deposit(x,y))

∀a,y (a = buy_product(y) ⊃ ∃ x,z subactivity(transfer(x,y,z) , a))
∀x,y,z subactivity(withdraw(x,y), transfer(x,y,z))
∀x,y,z subactivity(deposit(x,z)), transfer(x,y,z))

• Composition relationships

∀o,x occurrance_of(o, buy_product(x)) ⊃
∃o1,o2,y,z,w,v occurrence_of(o1, transfer(y,x,z)

∧ occurrence_of(o2, transfer(w,x,v))
∧ subactivity_occurrence(o1, o)
∧ subactivity_occurrence(o2, o)

• Process description for buy_product

• Can represent
– Other composite activities
– Pre-conditions (e.g., transfers only if sufficient funds)
– Effects (e.g., of a transfer)

June 30, 2004 SWSL's FLOWS 26

Minimal activity tree
• Assume four atomic activity types

d1 = deposit (100, Account2)
d2 = deposit (5, Account3)

w1 = Withdraw (100, Account1)
w2 = withdraw (5, Account1)

w1 w2

init

w2

d1 d2

d1 d2w1

w2

d2d2 d1

d1 d2 w1

d1d2 d1

June 30, 2004 SWSL's FLOWS 27

Example assertion from Use Case
• Very preliminary sketch, to give basic idea
• Two transfers of X and Y are equivalent to one transfer

of X+Y (between same accounts). But the fee is double.
∀ o1,o2 (
equivalent(o1,o2) iff
∀ o3, o4, buyer, seller, broker, amount1, amount2, amount3, fee1, fee2, fee3
(if occurrence_of (o1, double_transfer (buyer, seller, broker, amount1, fee1, amount2, fee2)

∧ subactivity_occurrence (o3, o1)
∧ subactivity_occurrence (o4, o1)
∧ subactivity (transfer(buyer, seller, amount1), o3)
∧ subactivity (transfer(buyer, broker, fee1), o3)
∧ subactivity (transfer(buyer, seller, amount2), o4)
∧ subactivity (transfer(buyer, broker, fee2), o4)

∧

occurrence_of (o2, merged_transfer(buyer, seller, broker, amount3, fee3)
∧ subactivity(transfer(buyer, seller, amount3), o2) and
∧ subactivity(transfer(buyer, broker, fee3)), o2)

then amount3 = plus(amount1, amount2) ∧ fee3 = plus(fee1, fee2)
)

June 30, 2004 SWSL's FLOWS 28

Another assertion from Use Case
• Very preliminary sketch, to give basic idea
• Multiple international money transfers on the same

account are not executed in parallel by bank B unless
the costumer has a long-lasting relationship with bank B

∀ o1, o2, account, account1, account2, amount1, amount2 (
if occurrence_of (o1, transfer(account, account1, amount1))

∧ occurrence_of (o2, transfer(account, account2, amount2))
∧ "o1 is international"
∧ "o2 is international"

then precedes(o1, o2) or precedes(o2, o1)

June 30, 2004 SWSL's FLOWS 29

June 30, 2004 SWSL's FLOWS 30

book_plane
Prec: plane_booked = false

Input: depature_city,
date_leave,
arrival_airport,
date_back

Output: ticket_plane_id

Eff: plane_booked = true

book_hotel
Prec: hotel_booked = false

Input: hotel_city,
date_arrive,
date_back

Output: name_hotel,
hotel_booking_id

Eff: hotel_booked = true

register_event
Prec: event_booked = false

Input: event_name,

Output: start_attend_date,
end_attend_date,
registration_id,
city_nearby_hotel,
nearby_airport

Eff: event_booked = true

Travel Use Case
An example of rich services and rich composition
• Atomic and non-atomic (fsa-based) “base” services
• Sequential and interleaved composition
• Activities and messages in one framework
Three services
• Different kinds of users want the services called in

different orders
– E.g., tourist wants hotel; plane; event

We illustrate how PSL can express 3 perspectives:
1. Atomic / SingleUse (cf OWL-S)

– View each service as atomic
– Create composite service for one use only

2. Interactive / generic re-usable (cf Roman model)
– View each service as activity-based fsa
– Create re-usable composite service targeted to any user

3. Blending of activity-based and message-based
– View message send/receive as activities
– Record message contents in predicate-based fluents
– Can describe data flow, track history

June 30, 2004 SWSL's FLOWS 31

1. Atomic eService/SingleUse composition (sketch)

// establish sub-activity structure for Maria_serv

subactivity(launch, Maria_serv) ∧ subactivity(book_hotel, Maria_serv) ∧
subactivity(book_plane, Maria_serv) ∧ subactivity(register_event, Maria_serv)

// characterize all possible occurrances of Maria_serv (i.e., all paths in activity tree for Maria_serv)

∀x. occurrence_of (x, Maria_serv) ⇔

// exists a root atomic occurrance and atomic occurrance of book_hotel activity

(∃o1 occurrence_of(o1,book_hotel) ∧ subactivity_occ(o1, x) ∧ root(o0,x) ∧

(if ¬ (prior(Precond_hotel, o1) ∧ prior(Input_hotel, o1))
then (holds(Failure_hotel_booking , o1) ∧ leaf_occurrence(o1, x))
else (holds(Eff_hotel, o1) ∧ holds(success_hotel_booking,01) ∧

// if the book_hotel occurrance succeeded, then there is also an occurrance of book_plane

∃ o2. ocurrence_of(o2, book_plane) ∧ subactivity_occ(o2, x) ∧ next_subocc(o1, o2, x)
(if ¬ (prior(Precond_plane, o2) ∧ prior(Input_hotel, o2))
then (holds(Failure_plane_booking, o2) ∧ leaf_occurrence(o2, x))
else (holds(Eff_plane, o2) ∧ holds(Success_plane_booking, o2) ∧

// if the book_plane occurrance succeeded, then there is also an occurrance of register_event

∃ o3. occurrence_of(o3, register_event) ∧ subactivity_occ(o3, x) ∧ next_subocc(o2, o3, x) ∧
(if ¬ (prior(Precond_event, o3) ∧ prior(Input_event, o3))
then (holds(Failure_event_booking, o3) ∧ leaf_occurrence(o3, x)
else (holds(Eff_event, o3) ∧ holds(Success_event_booking, o3) ∧ leaf_occurrence(o3, x))))))))

// some notational short-hand

Precond_hotel ⇔ ¬ booked_hotel; Eff_hotel ⇔ booked_hotel; ...similar for plane and event

• Building composite activity “Maria_serv” for tourist Maria
• Specify that the three atomic services are in sequence; include simple exception handling
• (Selected) fluents:booked_xxx, Success_xxx_booking, Fail_xxx_booking

[“Fail_hotel_booking”
is true]

The three activity trees (up to
isomorphism) corresponding
to composite activity
Maria_serv as defined in
green box. Maria_serv can
be defined in a variety of
ways, leading to different
(sets of) activity trees

book_hotel

[“Success_hotel_booking”
is true]

book_hotel

book_plane

[“Success_hotel_booking”
is true]

book_hotel

book_plane

[“Fail_plane_booking”
is true]

[“Success_plane_booking”
is true]

book_event

June 30, 2004 SWSL's FLOWS 32

ϕM(x) = (

// initial situation ∃ o. occurrence_of(o, launch) ∧ root(o,x) ∧ holds(p, launch)

// for all transitions in FSA M include the following (the following example is for δ(p,a) = t)

∀o1, o2 if (subactivity_occurrence(o1, x) ∧ subactivity_occurrence(o2, x) ∧
next_subocc(o1, o2, x) then (holds(p, o1) ∧ occurrence_of(o2, a) → holds(t, o2))

// from a given atomic occurrance, there is at least one child for each transition out of the corresponding
state, and no illegal transitions (the following is for atomic occurrance o1 that corresponds to being in state p)

∀o1 if (subactivity_occurrence(o1, x) ∧ holds(p, o1)
then ∃ o2 (subactivity_occurrence(o2, x) ∧ next_subocc(o1, o2, x) ∧ occurrence_of(o2, a)

∧ ∃ o2 (subactivity_occurrence(o2, x) ∧ next_subocc(o1, o2, x) ∧ occurrence_of(o2, b)
∧ ¬ ∃ o2 (subactivity_occurrence(o2, x) ∧ next_subocc(o1, o2, x) ∧ occurrence_of(o2, c)

// for all final states include the following (the following example is for s in final states)
∀o (if leaf_occurrence(o, x) → holds(s, o))

2a. Representing in PSL a complex process, whose internal
structure corresponds to an activity-based FSA (sketch)

We illustrate the encoding using an abstract example
• Assume 1 fluent per state, assert that only one state-fluent can be true at a time
• We transform the fsa by adding a new start-state with “launch” activity

Parts of (representative) “activity tree” for M
[This tree might be embedded into an “occurrence tree” which

represents a family of concurrent activity occurrences]

s

z p tlaunch a

c

o_1

o_2
(action a)

[p is true]

[t is true]

[p is true]b

o
(action launch)

[s is true]

o_3
(action b)

d

FSA M

2b. Comments re embedding of FSA descrips into PSL

We have sketched a specific way to build up a formula ϕM(.) as described
informally on prevoius slide

• Conjecture (“Faithfulness”): x satisfies formula ϕM(x) iff x is an activity tree
and there is a mapping between accepted words of M and finite branches of x.
– For each word w in L(M) at least one finite branch with actions corresponding to w
– For each finite branch β satisfying appropriate fluents at the end, there is a word in

L(M) corresponding to β

• Can build similar formula χ(x) characterizing a single path through the activity
tree for M, i.e., (finite branch) x satisfies χ(x) iff x corresponds to an accepted
word of M

• Can build similar formula ΨM(x,z) stating that x is the activity tree of M
embedded into the occurrence tree z

• Given a UDDI+, can build a ϕM(.) for each M in the UDDI+
– Open problem: Can we reify the UDDI+ directory, and talk about member_of(x,U) ??

• Open problem (informal statement): Is there a “generic” first-order formula
Γ(ϕM(.), ϕN(.)), such that for arbitrary fsa’s M and N and associated formulas
ϕM(.) and ϕN(.), we have Γ(ϕM(x), ϕN(y)) iff L(M) = L(N)
– At a minimum, given fsa’s M and N, you can by hand build a formula stating that M

and N accept equiv languages

June 30, 2004 SWSL's FLOWS 33

2c. Using automated composition to create re-usable,
generic composition of interactive (fsa-based) services

June 30, 2004 SWSL's FLOWS 34

• The base services for this example are richer than for previous example
• (We think that) we can encode multiple FSA’s, and describe requirements

for a composition (via delegator) to exist (in spirit of “Roman” results)

register_event

book_planebook_limo

book_airtravel

book_
limo

book_train

book_
traintravel

register
_event

UDDI++

book_train

book_
plane

book_hotel

book_
hotel

book_
plane

book_
train

book_limo
register_
event

book_accom
_shuttle

book_
hotel

book_limo

book_limo

book_limo

book_acco
m_shuttle

Delegator (color indicates which FSA performs action)

book_
train

book_
plane

book_
hotel

book_hotel

book_
plane

book_train

book_
limo register_

event

book_
accom_
shuttle

book_accom_
shuttle

Desired re-usable service

book_
hotel

book_resid
ence

list_nearby_
facilities

book_accom_
shuttle

book_accomo
dation

June 30, 2004 SWSL's FLOWS 35

3a. Message Passing between atomic services
(illustration in very simple context)

µ(x) ⇔

// basic structure of book_plane

occ_of(x, book_plane) ∧

∃ o1, o2, o3 (sub_act(o1, x) ∧ sub_act(o2, x) ∧ sub_act(o3, x) ∧
occ_of(o1, book_plane_rec) ∧
occ_of(o2, book_plane_exec) ∧
occ_of(o3, book_plane_send) ∧

// “glue” between book_hotel and book_plane

(∃o4 o5 occ_of(o5, reg_event) ∧ sub_act(o4, o5) ∧
occ_of(o4, reg_event_send) ∧ leaf_occ(o4, o5) ∧
next_subocc(o1, o4)) ∧

// reading from message repository

(∃m’, v’, m’’, v’’, m’’’, v’’’, m’’’’, v’’’’
(prior (mess_repos(book_plane, m’), o1) ∧
mess_type(m’, departure_city) ∧ mess_value(m’, v’) ∧
¬holds(mess_repos(book_plane, m’), o1) ∧
... /* similar for m’’, m’’’, m’’’’ */) ∧

// execution of book_plane_execute ...

// sending messages to regist_event ...

// “glue” between book_plane and register_event

bo
ok

_p
la

ne
re

gi
st

_
ev

en
t

bo
ok

_
ho

te
l

book_plane_
receive

book_plane_
execute

book_plane_
send

book_hotel_
send

register_event_
receive

.

.

.

.

.

• book_plane assumed to have 3 sub-activities: _receive, _execute, _send
• Use predicate-based fluent “mess_repos(service_name, message_variable)” to hold

messages being passed to a service

June 30, 2004 SWSL's FLOWS 36

// Values passed from book_hotel to book_plane

o is occ of composite service
o1 is occ of book_plane_receive …
∃i, m, v (input_type(i, date_arrive) ∧ input_value(i, v) ∧
mess_type(m, date_leave) ∧ mess_value(m, v) ∧
prior(mess_repos(comp_service, i), o) ∧
prior (mess_repos(book_plane, m), o1)

// Constraint between input values

o is occ of composite service
o1 is occ of book_hotel; o2 is occ of book_plane …
∃i, i’, v,v’ (
input_type(i, date_arrive) ∧ input_value(i, v) ∧
input_type(i’, date_leave) ∧ input_value(i’, v’) ∧
element_of(v, v’)

book_hotel

register_event

Prec: plane_booked = false

Input: depature_city,
date_leave,
arrival_airport,
date_back

Output: ticket_plane_id

Eff: plane_booked= true

book_plane

Prec: hotel_booked = false

Input:hotel_city,
date_arrive,
date_back

Output: name_hotel,
hotel_booking_id

Eff: hotel_booked = true

Prec: event_booked = false

Input: event_name,

Output: start_attend_date,
end_attend_date,
registration_id,
city_nearby_hotel,
nearby_airport

Eff: event_booked = true

==

∈

near

∈

3b. Expressing Constraints
on Data Flow

• Can express variety of data flow
constraints

• Assume the 3 atomic services as on
previous slide

Legend
data in/out of composite service
data flow within composite service
constraint on data flowing within
composite service

	FLOWS:A First-Order Logic Ontology for Web ServicesJune 30, 2004
	Outline
	What is FLOWS?
	Representational Desiderata:
	Some Pros/Cons of FOL
	Outline
	FLOWS Process Model
	Process Specification Language (PSL)
	PSL Core Theories
	Some Structures in Models of PSL
	FLOW Process Model Concepts
	Pros/Cons of using PSL
	Issue: Relationship to OWL-S
	Issue: Tractability
	Outline
	FLOWS Query Language (FQL)
	FLOWS Specification Language (FSL)
	Outline
	Issue: Implementations
	Summary of FLOWS
	Supplementary Material
	Discussion?
	Supplementary Material…
	Case Studies
	Financial Transactions Use Case
	Financial Transactions:Key Building Blocks
	Minimal activity tree
	Example assertion from Use Case
	Another assertion from Use Case
	1. Atomic eService/SingleUse composition (sketch)
	2a. Representing in PSL a complex process, whose internal structure corresponds to an activity-based FSA (sketch)
	2b. Comments re embedding of FSA descrips into PSL
	2c. Using automated composition to create re-usable, generic composition of interactive (fsa-based) services
	3a. Message Passing between atomic services (illustration in very simple context)

