
4/13/2003 Copyright 2002-2003 by Benjamin Grosof. All Rights Reserved

How SW Rules + Ontologies
Connect to Procedural Aspects

of SW Services

Presentation for
Semantic Web Services Language committee of

Semantic Web Services Coalition (a.k.a. Initiative)
April 11, 2003, at face-to-face, Miami, FL, USA

Prof. Benjamin Grosof

MIT Sloan School of Management
bgrosof@mit.edu http://www.mit.edu/~bgrosof/

4/13/2003 Copyright 2002-2003 by Benjamin Grosof. All Rights Reserved

Overview: {SW rules+ontologies} and the procedural aspect of SWS

Quickly review: rule-based SWS cf. the 3/20 SWSL telecon presentation and
4/9 DAML PI Mtg Services Breakout
– Describing post-conditions and pre-conditions, esp. contingent behavior
– Let’s do more use cases and application scenarios

• Situated logic programs (SLP) [the largest emphasis of this presentation]
– very simple workflow, viewable as timeless and stateless
– abstraction of event-condition-action rules and OPS5 production rules
– supported in RuleML and (basically too in) Jess.
– actions (invoke external procedures) triggered by inferring of conclusions
– queries (invoke external procedures) during testing of rule antecedent conditions

• Built-ins used in rules and ontologies, e.g.,
– arithmetic and comparison operators/functions

• Exception handling in workflows and service agreements/contracts
• Representing service post-conditions and state transitions, incl. contracts,

persistence defaults [-- next presentation could usefully have more on this]

4/13/2003 Copyright 2002-2003 by Benjamin Grosof. All Rights Reserved

Rule-based Semantic Web Services
• Rules/LP in appropriate combination with DL as KR, for RSWS

– DL good for categorizing: a service overall, its inputs, its outputs

• Rules to describe service process models
– rules good for representing:

• preconditions and postconditions, their contingent relationships
• contingent behavior/features of the service more generally,

– e.g., exceptions/problems
– familiarity and naturalness of rules to software/knowledge engineers

• Rules to specify deals about services: cf. e-contracting.

4/13/2003 Copyright 2002-2003 by Benjamin Grosof. All Rights Reserved

Rule-based Semantic Web Services
• Rules often good to executably specify service process models

– e.g., business process automation using procedural attachments to
perform side-effectful/state-changing actions ("effectors" triggered by
drawing of conclusions)

– e.g., rules obtain info via procedural attachments ("sensors" test rule
conditions)

– e.g., rules for knowledge translation or inferencing

– e.g., info services exposing relational DBs

• Infrastructural: rule system functionality as services:
– e.g., inferencing, translation

4/13/2003 Copyright 2002-2003 by Benjamin Grosof. All Rights Reserved

Application Scenarios
for Rule-based Semantic Web Services

• SweetDeal [Grosof & Poon 2002] configurable reusable e-contracts:
– LP rules about agent contracts with exception handling
– … on top of DL ontologies about business processes;
– a scenario motivating DLP

• Other:
– Trust management / authorization (Delegation Logic) [Li, Grosof, &

Feigenbaum 2000]
– Financial knowledge integration (ECOIN) [Firat, Madnick, & Grosof

2002]
• Rule-based translation among contexts / ontologies
• Equational ontologies

– Business policies, more generally, e.g., privacy (P3P)

4/13/2003 Copyright 2002-2003 by Benjamin Grosof. All Rights Reserved

• E.g., in OO app’s, DB’s, workflows.

• Relational databases, SQL: Views, queries, facts are all rules.
• SQL99 even has recursive rules.

• Production rules (OPS5 heritage): e.g.,
– Jess, Blaze, ILOG, Haley: rule-based Java/C++ objects.

• Event-Condition-Action rules (loose family), cf.:
– business process automation / workflow tools.
– active databases; publish-subscribe.

• Prolog, e.g., XSB: “logic programs” as a full programming language.
• (Lesser: other knowledge-based systems.)

Flavors of Rules Commercially Most
Important today in E-Business

4/13/2003 Copyright 2002-2003 by Benjamin Grosof. All Rights Reserved

• E.g., in OO app’s, DB’s, workflows.

• Relational databases, SQL: Built-in sensors, e.g., for arithmetic,
comparisons, aggregations. Sometimes effectors: active rules / triggers.

• Production rules (OPS5 heritage): e.g., Jess
– Pluggable (and built-in) sensors and effectors.

• Event-Condition-Action rules:
– Pluggable (and built-in) sensors and effectors.

• Prolog: e.g., XSB.
– Built-in sensors and effectors. More recent systems: more pluggability

of the built-in attached procedures.

Heavy Reliance on Procedural Attachments in
Currently Commercially Important Rule Families

4/13/2003 Copyright 2002-2003 by Benjamin Grosof. All Rights Reserved

Situated LP’s: Overview
• Point of departure: LP’s are pure-belief representation, but most

practical rule systems want to invoke external procedures.
• Situated LP ‘s feature a semantically-clean kind of procedural

attachments. I.e., they hook beliefs to drive procedural API’s outside
the rule engine.

• Procedural attachments for sensing (queries) when testing an
antecedent condition or for effecting (actions) upon concluding a
consequent condition. Attached procedure is invoked when testing or
concluding in inferencing.

• Sensor or effector link statement specifies an association from a
predicate to a procedural call pattern, e.g., a method. A link is
specified as part of the representation. I.e., a SLP is a conduct set that
includes links as well as rules.

4/13/2003 Copyright 2002-2003 by Benjamin Grosof. All Rights Reserved

Situated LP’s: Overview (cont.’d)

• phoneNumberOfPredicate ::s:: BoeingBluePagesClass.getPhoneMethod .
ex. sensor link

• shouldSendPagePredicate ::e:: ATTPagerClass.goPageMethod . ex.
effector link

• Sensor procedure may require some arguments to be ground, i.e., bound;
in general it has a specified binding-signature.

• Enable dynamic or remote invocation/loading of the attached procedures
(exploit Java goodness).

• Overall: cleanly separate out the procedural semantics as a declarative
extension of the pure-belief declarative semantics. Easily separate
chaining from action.

4/13/2003 Copyright 2002-2003 by Benjamin Grosof. All Rights Reserved

SweetJess: Translating an Effector Statement
<damlRuleML:effe>

<damlRuleML:_opr>

<damlRuleML:rel>giveDiscount</damlRuleML:rel>
</damlRuleML:_opr>
<damlRuleML:_aproc>

<damlRuleML:jproc>

<damlRuleML:meth>setCustomerDiscount</damlRuleML:meth>

<damlRuleML:clas>orderMgmt.dynamicPricing</damlRuleML:clas>
<damlRuleML:path>com.widgetsRUs.orderMgmt

</damlRuleML:path>
</damlRuleML:jproc>

</damlRuleML:_aproc>

</damlRuleML:effe>

Equivalent in JESS: key portion is:

(defrule effect_giveDiscount_1

(giveDiscount ?percentage ?customer)

=>

(effector setCustomerDiscount orderMgmt.dynamicPricing

(create$?percentage ?customer)))

Associates with predicate P : an attached
procedure A that is side-effectful.

- Drawing a conclusion about P triggers an
action performed by A.

jproc = Java attached procedure.

meth, clas, path = its methodname,

classname, pathname.

4/13/2003 Copyright 2002-2003 by Benjamin Grosof. All Rights Reserved

• Definitional: complete inferencing+action occurs during
an “episode” – intuitively, run all the rules (including
invoking effectors and sensors as go), then done.

• Effectors can be viewed as all operating/invoked after
complete inferencing has been performed.
– Independent of inferencing control.

• But often intuitively less appropriate if only doing
backward inferencing.

– Separates pure-belief conclusion from action.

Overview: Semantics of Situated Logic Programs

4/13/2003 Copyright 2002-2003 by Benjamin Grosof. All Rights Reserved

• Sensors can be viewed as accessing a virtual knowledge base (of
facts). Their results simply augment the local set of facts. These
can be saved (i.e., cached) during the episode.
– Independent of inferencing control.

• The sensor attached procedure could be a remote powerful DB or
KB system, a web service, or simply some humble procedure.

• Likewise, an effector attached procedure could be a remote web
service, or some humble procedure. An interesting case for SW is
when it performs updating of a DB or KB, e.g., “delivers an
event”.

Overview: Semantics of Situated LP, continued

4/13/2003 Copyright 2002-2003 by Benjamin Grosof. All Rights Reserved

• Conditions:
– Effectors have only side effects: they do not affect operation of

the (episode’s) inferencing+action engine itself, nor change the (episode’s)
knowledge base.

– Sensors are purely informational: they do not have side effects
(i.e., any such can be ignored).

– Timelessness of sensor and effector calls: their results are
not dependent on when they are invoked, during a given inferencing episode.

– “Sensor-safeness”: Each rule ensures sufficient (variable) bindings
are available to satisfy the binding signature of each sensor associated with
any of its body literals – such bindings come from the other, non-sensor
literals in the rule body. During overall “testing” of a rule body, sensors
needing such bindings can be viewed as invoked after the other literals have
been “tested”.

Overview of Semantics of Situated LP, continued

4/13/2003 Copyright 2002-2003 by Benjamin Grosof. All Rights Reserved

• Generalizations possible:
– permit multiple sensors or effectors per predicate.
– sense functions (or terms) not just predicates.
– permit sensor priority – i.e, specify the prioritization of the facts

that result from a particular sensor .

– associate sensing with atoms/literals (or terms), but this is
reducible to sensing predicates (or functions) – by rewriting of
the rules.

• Challenge: error handling info returned from attached procedures

Overview: Semantics of Situated LP, Continued

4/13/2003 Copyright 2002-2003 by Benjamin Grosof. All Rights Reserved

Example: Notifying a Customer
when their Order is Modified

• See extended version of B. Grosof WITS-2001 paper
– “Representing E-Business Rules on the Semantic Web:

Situated Courteous Logic Programs in RuleML”
– In file wits01-report-r2.pdf
– Also at http://ebusiness.mit.edu/bgrosof

4/13/2003 Copyright 2002-2003 by Benjamin Grosof. All Rights Reserved

SweetDeal OPTIONAL SLIDES FOLLOW

4/13/2003 Copyright 2002-2003 by Benjamin Grosof. All Rights Reserved

Example Contract Proposal with Exception Handling
Represented using RuleML & DAML+OIL, Process Descriptions

buyer(co123,acme);
seller(co123,plastics_etc);

product(co123,plastic425);

price(co123,50);
quantity(co123,100);

http://xmlcontracting.org/sd.daml#Contract(co123);
http://xmlcontracting.org/sd.daml#specFor(co123,co123_process);
http://xmlcontracting.org/sd.daml#BuyWithBilateralNegotiation(co123_process);

http://xmlcontracting.org/sd.daml#result(co123,co123_res);

shippingDate(co123,3); // i.e. 3 days after order placed
// base payment = price * quantity

payment(?R,base,?Payment) <-
http://xmlcontracting.org/sd.daml#result(co123,?R) AND

price(co123,?P) AND quantity(co123,?Q) AND

multiply(?P,?Q,?Payment) ;

Using concise text syntax

(SCLP textfile format)

for concise human reading

4/13/2003 Copyright 2002-2003 by Benjamin Grosof. All Rights Reserved

SCLP TextFile Format for (Daml)RuleML
payment(?R,base,?Payment) <-

http://xmlcontracting.org/sd.daml#result(co123,?R) AND
price(co123,?P) AND quantity(co123,?Q) AND

multiply(?P,?Q,?Payment) ;

<drm:imp>

<drm:_head> <drm:atom>

<drm:_opr><drm:rel>payment</drm:_opr></drm:rel> <drm:tup>

<drm:var>R</drm:var> <drm:ind>base</drm:ind> <drm:var>Payment</drm:var>
</drm:tup></drm:atom> </drm:_head>

<drm:_body>

<drm:andb>

<drm:atom> <drm:_opr>

<drm:rel href= “http://xmlcontracting.org/sd.daml#result”/>

</drm:_opr> <drm:tup>

<drm:ind>co123</drm:ind> <drm:var>Cust</drm:var>
</drm:tup> </drm:atom>

… </drm:andb> </drm:_body> </drm:imp>

drm = namespace for damlRuleML

4/13/2003 Copyright 2002-2003 by Benjamin Grosof. All Rights Reserved

Example Contract Proposal, Continued:
lateDeliveryPenalty exception handler module

lateDeliveryPenalty_module {

// lateDeliveryPenalty is an instance of PenalizeForContingency

// (and thus of AvoidException, ExceptionHandler, and Process)

http://xmlcontracting.org/pr.daml#PenalizeForContingency(lateDeliveryPenalty) ;
// lateDeliveryPenalty is intended to avoid exceptions of class

// LateDelivery.

http://xmlcontracting.org/sd.daml#avoidsException(lateDeliveryPenalty,

http://xmlcontracting.org/pr.daml#LateDelivery);

// penalty = - overdueDays * 200 ; (negative payment by buyer)

<lateDeliveryPenalty_def> payment(?R, contingentPenalty, ?Penalty) <-
http://xmlcontracting.org/sd.daml#specFor(?CO,?PI) AND

http://xmlcontracting.org/pr.daml#hasException(?PI,?EI) AND

http://xmlcontracting.org/pr.daml#isHandledBy(?EI,lateDeliveryPenalty) AND

http://xmlcontracting.org/sd.daml#result(?CO,?R) AND

http://xmlcontracting.org/sd.daml#exceptionOccurred(?R,?EI) AND
shippingDate(?CO,?CODate) AND shippingDate(?R,?RDate) AND

subtract(?RDate,?CODate,?OverdueDays) AND
multiply(?OverdueDays, 200, ?Res1) AND multiply(?Res1, -1, ?Penalty) ;

}

<lateDeliveryPenaltyHandlesIt(e1)> // specify lateDeliveryPenalty as a handler for e1

http://xmlcontracting.org/pr.daml#isHandledBy(e1,lateDeliveryPenalty);

4/13/2003 Copyright 2002-2003 by Benjamin Grosof. All Rights Reserved

END of SweetDeal OPTIONAL SLIDES

4/13/2003 Copyright 2002-2003 by Benjamin Grosof. All Rights Reserved

ALSO RELEVANT ARE SLIDES
from 3/20/03 SWSL telecon

“Overview of
Semantic Web Services”

by Benjamin Grosof

