How SW Rules + Ontologies

Connect to Procedural Aspects
of SW Services

Presentation for
Semantic Web Services Language committee of

Semantic Web Services Coalition (a.k.a. Initiative)
April 11, 2003, at face-to-face, Miami, FL, USA

Prof. Benjamin Grosof

MIT Sloan School of Management
bgrosof(@mit.edu http://www.mit.edu/~bgrosof/

4/13/2003 Copyright 2002-2003 by Benjamin Grosof. All Rights Reserved

Overview. {SW rules+ontologies} and the procedural aspect of SWS

Quickly review: rule-based SWS cf. the 3/20 SWSL telecon presentation and
4/9 DAML PI Mtg Services Breakout

— Describing post-conditions and pre-conditions, esp. contingent behavior
— Let’s do more use cases and application scenarios

Situated logic programs (SLP) [the largest emphasis of this presentation]
— very simple workflow, viewable as timeless and stateless
— abstraction of event-condition-action rules and OPS5 production rules
— supported in RuleML and (basically too in) Jess.

— actions (invoke external procedures) triggered by inferring of conclusions
— queries (invoke external procedures) during testing of rule antecedent conditions

Built-ins used in rules and ontologies, e.g.,
— arithmetic and comparison operators/functions
Exception handling in workflows and service agreements/contracts

Representing service post-conditions and state transitions, incl. contracts,
persistence defaults [-- next presentation could usefully have more on this]

4/13/2003 Copyright 2002-2003 by Benjamin Grosof. All Rights Reserved

Rule-based Semantic Web Services

« Rules/LP in appropriate combination with DL as KR, for RSWS
— DL good for categorizing: a service overall, its inputs, its outputs

* Rules to describe service process models

— rules good for representing:
 preconditions and postconditions, their contingent relationships

 contingent behavior/features of the service more generally,

— e.g., exceptions/problems

— familiarity and naturalness of rules to software/knowledge engineers

* Rules to specify deals about services: cf. e-contracting.

4/13/2003 Copyright 2002-2003 by Benjamin Grosof. All Rights Reserved

Rule-based Semantic Web Services

Rules often good to executably specify service process models

— €.g., business process automation using procedural attachments to
perform side-effectful/state-changing actions ("effectors" triggered by
drawing of conclusions)

e.g., rules obtain info via procedural attachments ("sensors" test rule
conditions)

e.g., rules for knowledge translation or inferencing

e.g., info services exposing relational DBs

Infrastructural: rule system functionality as services:

— e.g., Inferencing, translation

4/13/2003 Copyright 2002-2003 by Benjamin Grosof. All Rights Reserved

Application Scenarios
for Rule-based Semantic Web Services

« SweetDeal [Grosof & Poon 2002] configurable reusable e-contracts:
— LP rules about agent contracts with exception handling

— ... on top of DL ontologies about business processes;

— a scenario motivating DLP

e Other:

— Trust management / authorization (Delegation Logic) [Li, Grosof, &
Feigenbaum 2000]

— Financial knowledge integration (ECOIN) [Firat, Madnick, & Grosof
2002]

* Rule-based translation among contexts / ontologies

* Equational ontologies

— Business policies, more generally, e.g., privacy (P3P)

4/13/2003 Copyright 2002-2003 by Benjamin Grosof. All Rights Reserved

Flavors of Rules Commercially Most
Important today in E-Business

* E.g.,1n OO app’s, DB’s, workflows.

Relational databases, SQL: Views, queries, facts are all rules.

» SQLY9 even has recursive rules.
Production rules (OPS5 heritage): e.g.,
— Jess, Blaze, ILOG, Haley: rule-based Java/C++ objects.
Event-Condition-Action rules (loose family), cf.:

— business process automation / workflow tools.
— active databases; publish-subscribe.
Prolog, e.g., XSB: “logic programs” as a full programming language.

(Lesser. other knowledge-based systems.)

4/13/2003 Copyright 2002-2003 by Benjamin Grosof. All Rights Reserved

Heavy Reliance on Procedural Attachments in
Currently Commercially Important Rule Families

* E.g.,1n OO app’s, DB’s, workflows.

Relational databases, SQL: Built-in sensors, e.g., for arithmetic,
comparisons, aggregations. Sometimes effectors: active rules / triggers.

Production rules (OPS5 heritage): e.g., Jess
— Pluggable (and built-in) sensors and effectors.

Event-Condition-Action rules:
— Pluggable (and built-in) sensors and effectors.

Prolog: e.g., XSB.

— Built-in sensors and effectors. More recent systems: more pluggability
of the built-in attached procedures.

4/13/2003 Copyright 2002-2003 by Benjamin Grosof. All Rights Reserved

Situated LP’s: Overview

Point of departure: LP’s are pure-belief representation, but most
practical rule systems want to invoke external procedures.

Situated LP ‘s feature a semantically-clean kind of procedural
attachments. I.ec., they hook beliefs to drive procedural API’s outside
the rule engine.

Procedural attachments for sensing (queries) when testing an
antecedent condition or for effecting (actions) upon concluding a
consequent condition. Attached procedure is invoked when testing or
concluding in inferencing.

Sensor or effector link statement specifies an association from a
predicate to a procedural call pattern, e.g., a method. A link is
specified as part of the representation. I.e., a SLP is a conduct set that
includes links as well as rules.

4/13/2003 Copyright 2002-2003 by Benjamin Grosof. All Rights Reserved

Situated LP’s: Overview (cont. d)

phoneNumberOfPredicate ::s:: BoeingBluePagesClass.getPhoneMethod .
ex. sensor link

shouldSendPagePredicate ::e:: ATTPagerClass.goPageMethod .
effector link
Sensor procedure may require some arguments to be ground, i.e., bound;
in general 1t has a specified binding-signature.

Enable dynamic or remote invocation/loading of the attached procedures
(exploit Java goodness).

Overall: cleanly separate out the procedural semantics as a declarative
extension of the pure-belief declarative semantics. Easily separate
chaining from action.

4/13/2003 Copyright 2002-2003 by Benjamin Grosof. All Rights Reserved

SweetJess: Translating an Effector Statement

<damIRuleML:effe>
<damlRuleML:_ opr>

<damIRuleML:rel>giveDiscount</damIRuleML:rel>
</damlRuleML: opr>

<damIRuleML: aproc> - Drawing a conclusion about P triggers an
<damlIRuleML:jproc> action performed by A.

<damlRuleML:meth>setCustomerDiscount</damIRuleML:meth>

Associates with predicate P : an attached
procedure A that is side-effectful.

<damIRuleML:clas>orderMgmt.dynamicPricing</damIRuleML:clas>

<damlRuleML:path>com.widgetsRUs.orderMgmt
</damlRuleML:path>
</damlRuleML:jproc>
</damlRuleML: aproc>

jproc = Java attached procedure.

meth, clas, path = its methodname,

classname, pathname.

</damlRuleML:effe>

Equi valent in JESS: key portion is:
(defrule effect giveDi scount 1
(gi veDi scount ?percentage ?custoner)
=>
(effector setCustoner D scount orderMynt. dynam cPri ci ng
(create$?percentage ?custoner)))

4/13/2003 Copyright 2002-2003 by Benjamin Grosof. All Rights Reserved

Overview: Semantics of Situated Logic Programs

* Definitional: complete inferencing+action occurs during
an “episode” — intuitively, run all the rules (including
invoking effectors and sensors as go), then done.

 Effectors can be viewed as all operating/invoked after
complete inferencing has been performed.

— Independent of inferencing control.

 But often mtuitively less appropriate if only doing
backward inferencing.

— Separates pure-belief conclusion from action.

4/13/2003 Copyright 2002-2003 by Benjamin Grosof. All Rights Reserved

Overview.: Semantics of Situated LP, continued

« Sensors can be viewed as accessing a virtual knowledge base (of
facts). Their results simply augment the local set of facts. These
can be saved (i.e., cached) during the episode.

— Independent of inferencing control.

The sensor attached procedure could be a remote powerful DB or
KB system, a web service, or simply some humble procedure.

Likewise, an effector attached procedure could be a remote web
service, or some humble procedure. An interesting case for SW 1s
when it performs updating of a DB or KB, e.g., “delivers an
event”,

4/13/2003 Copyright 2002-2003 by Benjamin Grosof. All Rights Reserved

Overview of Semantics of Situated LP, continued

 Conditions:

— Effectors have only side effects: they do not affect operation of
the (episode’s) inferencing+action engine itself, nor change the (episode’s)
knowledge base.

Sensors are purely informational: they do not have side effects

(1.e., any such can be 1gnored).

Timelessness of sensor and effector calls: their results are
not dependent on when they are invoked, during a given inferencing episode.

“Sensor-safeness™: Each rule ensures sufficient (variable) bindings

are available to satisfy the binding signature of each sensor associated with
any of its body literals — such bindings come from the other, non-sensor
literals in the rule body. During overall “testing” of a rule body, sensors
needing such bindings can be viewed as invoked after the other literals have
been “tested”.

4/13/2003 Copyright 2002-2003 by Benjamin Grosof. All Rights Reserved

Overview.: Semantics of Situated LP, Continued

* Generalizations possible:
— permit multiple sensors or effectors per predicate.

— sense functions (or terms) not just predicates.

— permit sensor priority — 1.€, specify the prioritization of the facts
that result from a particular sensor .

— associate sensing with atoms/literals (or terms), but this 1s
reducible to sensing predicates (or functions) — by rewriting of
the rules.

* Challenge: error handling info returned from attached procedures

4/13/2003 Copyright 2002-2003 by Benjamin Grosof. All Rights Reserved

Example: Notifying a Customer
when their Order is Modified

* See extended version of B. Grosof WITS-2001 paper

— “Representing E-Business Rules on the Semantic Web:
Situated Courteous Logic Programs in RuleML”

— In file witsO1-report-r2.pdf
— Also at http://ebusiness.mit.edu/bgrosof

4/13/2003 Copyright 2002-2003 by Benjamin Grosof. All Rights Reserved

SweetDeal OPTIONAL SLIDES FOLLOW

4/13/2003 Copyright 2002-2003 by Benjamin Grosof. All Rights Reserved

Example Contract Proposal with Exception Handling
Represented using RuleML & DAML++OIL, Process Descriptions

buyer (co0l123, acne) ;
seller(col23,plastics etc),;
product (col123, pl asti c425); (SCLP textfile format)
price(col23, 50);
quantity(col23, 100); for concise human reading
http://xm contracting. org/sd. danm #Contract (c0123);

http://xm contracting. org/sd. dam #specFor (co0l23, col23 process);
http://xm contracting. org/sd. dam #BuyW t hBi | at er al Negoti ati on(co0123_process);

http://xm contracting. org/sd. dam #resul t (col23, col23 res);
shi ppi ngbate(co0123,3); // i1.e. 3 days after order placed
/| base paynent = price * quantity
paynent (?R, base, ?Paynent) <-
http://xm contracting. org/sd. danm #resul t (co0l123, ?R) AND
price(col23, ?P) AND quantity(col23, ?Q AND
mul ti1ply(?P, 7Q ?Paynment) ;

Using concise text syntax

4/13/2003 Copyright 2002-2003 by Benjamin Grosof. All Rights Reserved

SCLP TextFile Format for (Daml)RuleML

paynent (?R, base, ?Paynent) <-

http://xm contracting. org/sd. dam #resul t (co123, ?R) AND
price(col23,?P) AND quantity(col23,?Q AND

mul tiply(?P, ?2Q ?Paynent) ;

<drm i np>
<drm _head> <drm at on>

<drm _opr><drmrel >paynment </drm _opr></drmrel > <drm t up>

<drm var >R</ drm var> <drmind>base</drmind> <drm var>Paynment </ drm var>
</drmtup></drm atonr </drm _head>
<drm _body>
<dr m andb>
<drm at on®> <drm _opr>

drm = namespace for damlRuleML

<drm rel href : “http://xm contracting. org/sd. dam #result”/>
</drm _opr> <drm tup>

<drmind>C0123</drmind> <drmvar>CUSt </ drm var>
</drm tup> </drm at onp

« » o</ drmandb> </drm _body> </drmi np>

4/13/2003 Copyright 2002-2003 by Benjamin Grosof. All Rights Reserved

Example Contract Proposal, Continued:
lateDeliveryPenalty exception handler module

| ateDel i veryPenal ty nodul e {
/1l lateDeliveryPenalty is an instance of PenalizeFor Conti ngency
/1 (and thus of Avoi dException, ExceptionHandl er, and Process)
http://xm contracting. org/ pr.dam #Penal i zeFor Cont i ngency(l at eDel i veryPenal ty) ;
Il lateDeliveryPenalty is intended to avoid exceptions of class
/'l LateDelivery.
http://xm contracting. org/sd. dam #avoi dsExcepti on(l at eDel i veryPenal ty,
http://xm contracting. org/ pr.damnl #Lat eDel i very);

/1 penalty = - overdueDays * 200 ; (negative paynent by buyer)

<l at eDel i veryPenal ty_def > payrrent (?R, contingentPenalty, ?Penalty) <-
http://xm contracti ng. org/ sd. dam #specFor (?CO, ?Pl) AND
http://xm contracting. org/ pr.dam #hasExcepti on(?Pl, ?El) AND
http://xm contracting. org/ pr.dant #i SHandl edBy(?El , | at eDel i veryPenal ty) AND
http://xm contracti ng. org/ sd. dam #resul t (?CO ?R) AND

http://xm contracting. org/ sd. dani #except i onCccur r ed(?rR ?El) AND
shi ppi ngDat e(?CO, ?CODat e) AND shi ppi ngDat e(?R, ?RDat e) AND
subt r act (?RDat e, ?cobat e, 20ver dueDays) AnD

mul ti pl y(?OverdueDays, 200, ?Resl) AND nultiply(?Resl, -1, ?Penalty)

}
<| at eDel i veryPenal tyHandl eslt(el)> // specify lateDeliveryPenalty as a handler for el

http://xm contracting. org/ pr. damn #i sHandl edBy(el, | ateDel i veryPenal ty);

4/13/2003 Copyright 2002-2003 by Benjamin Grosof. All Rights Reserved

END of SweetDeal OPTIONAL SLIDES

4/13/2003 Copyright 2002-2003 by Benjamin Grosof. All Rights Reserved

ALSO RELEVANT ARE SLIDES
from 3/20/03 SWSL telecon

“Overview of
Semantic Web Services”

by Benjamin Grosof

4/13/2003 Copyright 2002-2003 by Benjamin Grosof. All Rights Reserved

