Automatic Composition of e-Services: The “Roman” way

Daniela Berardi

Dipartimento di Informatica e Sistemistica
Università di Roma “La Sapienza”

berardi@dis.uniroma1.it
http://www.dis.uniroma1.it/~berardi/
Overview

- Activity based model: the “Roman” approach
- Composition results in the “Roman” model
- Message based model
- Activity vs Message based model
- Embedding Activity based model into SitCalc
- Embedding Activity based model into PSL
e-Services and Community of e-Services: The Model used by “Roman” Results

- An e-Service is an interactive program that exports its behavior in terms of an abstract description.
- A client selects and interacts with it according to the description exported.

- A community of e-Services is:
 - a set of e-Services …
 - … that share implicitly a common understanding on a common set of actions and export their behavior using this common set of actions.
- A client specifies needs as e-Service behavior using the common set of actions of the community.
e-Service Exports its Behavior …

Many possible ways. In this talk…

• Behavior modeled by finite state machines
 core of state chart, UML state-transition diagram, etc.
 – in our FSMs, each transaction corresponds to an action (e.g.,
 search-by author-and-select, search-by title-and-select, listen-
 the-selected-song, …)

• In fact using a FSM we compactly describe all possible sequences
 of deterministic (atomic) actions: tree of all possible sequences of
 actions

• Data produced by actions not explicitly modeled
 data are used by the client to choose next action
e-Service as Execution Tree

Required behavior represented as a FSM

\[
\begin{array}{c}
S_0 \xrightarrow{a} \quad b \quad \xrightarrow{r} S_0
\end{array}
\]

- \(a\): “search by author (and select)”
- \(b\): “search by title (and select)”
- \(r\): “listen (the selected song)”

Execution tree (obtained by FSM unfolding)

\[
\begin{array}{c}
S_0 \xrightarrow{a} \quad b \xrightarrow{r} \quad \vdots \\
\end{array}
\]
e-Service Composition in the “Roman Framework”

Given:
- Community C of e-Services (expressed as FSMs)
- Target e-Service S_0 (again expressed as FSM)

Find:
- new FSM e-Service S' (delegator):
 - new alphabet = actions x (sets of service identifiers)
 - “accepts” same language as S_0
 - For each accepting run of S' on word w, and for each S in C, “projection” of this run onto moves of S is an accepting computation for S
Key Idea for Finding Composition:
Exploit Description Logics (DLs)

• Description Logics:
 – represent knowledge in terms of classes and relationships between classes
 – equipped with decidable reasoning

• Interesting properties:
 – Tree model property
 – Small model property
 – EXPTIME decidability
Results on Automatically Building e-Service Composition

DL encoding of target e-Service

DL Knowledge Base:

\[\Delta_0 \]

\[\Delta_i \]

\[\Delta_{aux} \]

\[\Delta_{Init} \]

Check satisfiability (and build a model)

e-Service composition

Initially all e-Services are in their initial states

DL additional domain-independent conditions

EXPTIME
Results

Thm 1: Composition exists \iff\ DL Knowledge Base satisfiable

From composition labeling of the target e-Service one can build a tree model for the Knowledge Base, and vice-versa.

Cor 1: Composition existence of e-Services, expressible as FSMs, is decidable in EXPTIME

Thm 2: If composition exists then finite state composition exists.

From a small model of a DL Knowledge Base, one can build a finite state composition.

Cor 2: Finite state composition existence of e-Services, expressible as FSMs, is decidable in EXPTIME

\[\Rightarrow\] Building finite state composition can be done in EXPTIME
Message Based Model

eC-Schema:

- finite set of abstract peers (*e*-Services)
 - peers can be implemented as FSM with input/output
 - each peer has a (bounded) queue
 \(\Rightarrow \) asynchronous communication between peers

- finite set of channels
 - i.e., \{<sender, receiver, message_type>\}

- finite set of incoming and outgoing messages over some alphabet \(\Sigma \)
 - input messages: \(?a, a \in \Sigma\)
 - output messages !a, a \(\in\) \(\Sigma\)
 - As technical simplification in theoretical model, each symbol “a” encodes a triple <sender,receiver,-message-type>

- **Conversation language**: sequence of messages exchanged between peers

Model is peer-to-peer, but can restrict to mediated by assuming “hub-and-spoke” connection graph. (I.e., one peer acts as the mediator)
E-Composition Schema

• An E-C schema specifies the infrastructure of composition
• Assume finite domains ⇒ can model parameters
Composition Infrastructure

- Peer-to-peer (distributed control)

- Hub-and-spoke (centralized control)
Peer Synthesis Statement and Results

• Problem statement
 – Given: ec-schema and LTL formula φ
 – Create: a FSM for each peer so that φ is satisfied
 – Note: not a composition problem, because this result is creating peers, not selecting them from a pre-existing “UDDI”

• Synthesis results for Mealy implementations with bounded queues
 – Mealy peer synthesis: decidable
 • Propositional LTL description \Rightarrow PSPACE

• (Also, results contrasting bounded vs. unbounded message queues)
“Roman” Activity Based Composition Result vs Message Based Synthesis Result

• Activity based Model:
 – behavior modeled as FSM, with transitions labeled by actions
 – client/server model: “active” client: s/he selects from a set of choices presented by e-service

• Result
 – Start with community of activity-based FSMs (e-services)
 – FMSs define constraint on legal sequence of actions executed by each peer
 – given a branching time spec. Ψ of global behavior and “constrained” peers, synthesize a delegator
 – peers communicate only with delegator
 – determinism only (for the moment)

• Message based Model:
 – behavior modeled as FSM, with transitions labeled by input/output messages
 – peer-to-peer model; no notion corresponding to client in activity model

• Result
 – Start with “ec-schema” which establishes topology for message-passing
 – no constraint on legal sequences of actions executed by each abstract peer
 – given a LTL spec. Φ of global behavior and “ec-schema”, synthesize peers such that Φ is realized
 – peer-to-peer communication
 – non determinism over messages (i.e., same message labeling different transition from same state)
“Roman” Activity Based vs Message Based

• “Roman” Activity based and Message based are complementary approaches:
 – Can merge them?
 – How?

• (other) “Roman” Activity based future work:
 – is our algorithm EXPTIME-hard?
 – currently we are working on a DL based prototype system that implements our composition algorithm
 – also working on notion of “k-look-ahead” compositions - gives more flexibility than first Roman results
 – add non determinism
 – data (i.e., parameters of actions)
Situation Calculus Encoding of Roman Model -- Idea

• Each e-Service i as Reiter’s Basic Action Theory Γ_i:
 – each action as a Situation Calculus action
 – each state of FSM is a fluent
 – special fluent $Final$ to indicate situation when e-Service execution can stop.
 \Rightarrow In Γ_i we have complete information on the initial situation and hence on the whole theory.

• e-Service composition:
 – represent which e-Services (in the community) are executed, when an action of the target e-Service is performed, by predicates $Step_i(a, s)$, denoting that e-Service i executes action a in situation s.
 \Rightarrow Situation Calculus Theory (but not basic)
 \Rightarrow Incomplete information over $Step_i(a, s)$
 – rename $Poss$ to $Poss_i$, rename $Final$ to $Final_i$
 – suitably modify the successor axioms to cope with $Step_i(a, s)$
Sit Calc Encoding -- Details

- **Target e-Service** $E_0 = (\Sigma, Q_0, q_0^0, \delta_0, F_0)$
 (Reiter Basic Action Theory)

 - $F_{q_0^0}(S_0)$
 initial situation

 - $\forall s. F_q(s) \supset \neg F_{q'}(s)$
 for all pairs of distinct states q, q’ in E_0
 e-Service states are pair-wise disjoint

 - $\forall s. \text{Poss}(a, s) \equiv \bigvee q \text{ st } \delta_0(q, a) \text{ is defined } F_q(s)$

 $\forall s \forall \alpha. F_{q'}(\text{do}(\alpha, s)) \equiv \bigvee a, q, st q' = \delta_0(q, a) (\alpha = a \land F_q(s)) \lor$
 $(F_{q'}(s) \land \bigwedge b \text{ st } \delta_0(q', b) \text{ is defined } \alpha \neq b)$
 for each q' = \delta_0(q,a)

 target e-Service can do an a-transition going to state q’

 - $\forall s. \text{Final}(s) \equiv \bigvee q \in F_0 F_q(s)$
 denotes target e-Service final states
Sit Calc Encoding -- Details (cont.d)

- Community e-Services \(E_i = (\Sigma, Q_i, q^0_i, \delta_i, F_i) \)
 - \(F_{q_i0}(S_0^i) \) \hspace{1cm} \text{initial situation}
 - \(\forall s. F_q(s) \supseteq \neg F_{q'}(s) \) \hspace{1cm} \text{for all pairs of distinct states } q, q' \text{ in } E_i \hspace{1cm} \text{e-Service states are pair-wise disjoint}
 - \(\forall s. \text{Poss}_i(a, s) \equiv \bigvee_q \text{ st } \delta_i(q, a) \text{ is defined } F_q(s) \)
 \(\forall s \forall \alpha. F_{q'}(\text{do}(\alpha, s)) \equiv \)
 \((\bigvee a, q, s \text{ st } q' = \delta_i(q, a) \hspace{1cm} (\alpha = a \land F_q(s) \land \text{Step}_i(\alpha, s))) \lor \)
 \((\neg \text{Step}_i(\alpha, s) \land F_{q'}(s)) \) \hspace{1cm} \text{for each } q' = \delta_i(q, a) \hspace{1cm} \text{if e-Service moved then new state, otherwise old state}
 - \(\forall s. \text{Final}_i(s) \equiv \bigvee_{q \in F_i} F_q(s) \) \hspace{1cm} \text{denotes community e-Service final states}
SitCalc Encoding -- Details (cont.d)

• Foundational, domain independent axioms:

\[\forall s, a. \ Poss(a, s) \land \neg \ Final(s) \rightarrow \bigvee_{i=1..n} \ Step_i(a, s) \land Poss_i(a, s) \]

for each action a

at least one of the community e-Services must move at each step

\[\forall s. \ Final(s) \rightarrow \bigwedge_{i=1..n} \ Final_i(s) \]

when target e-Service is final all comm. e-Services are final

\[\bigwedge_{i=0..n} F_{q_i0}(S_0^i) \]

in the initial situation all e-Services are in their initial state
PSL Encoding of Roman Model -- Idea

• Based on Rick Hull and Michael Gruninger encoding of message based model in PSL

• Basic idea to model an e-Service:
 – fluents to denote:
 • initial situation \((Init)\)
 • states of FSM \((F_q)\),
 • final states \((Final)\),
 – one activity for each action

• Component e-Services:
 – rename \(poss\) to \(poss_i\), rename \(Final\) to \(Final_i\)
 – fluent \(Step_{ai}\) to denote which component e-Service “moves”
PSL Encoding of Roman Model -- Idea

- Based on Rick Hull and Michael Gruninger encoding of message based model in PSL
- Basic idea to model an e-Service:
 - fluents to denote:
 - initial situation \((\text{Init})\)
 - states of FSM \((F_q)\),
 - final states \((\text{Final})\),
 - one activity for each action

- Component e-Services:
 - rename \(\text{poss} \) to \(\text{poss}_i\), rename \(\text{Final} \) to \(\text{Final}_i\)
 - fluent \(\text{Step}_ai\) to denote which component e-Service “moves”
PSL Encoding -- Details

- **Target e-Service** $E_0 = (\Sigma, Q_0, q^0_0, \delta_0, F_0)$
 - $\forall o.\text{prior}(F_q \supset \neg F_{q'}, o)$

 for all pairs of distinct states q, q' in E_0 e-Service states are pair-wise disjoint

 - $\forall o. \text{holds}(F_q, o) \supset \text{poss}(a, o)$
 $\forall o. \text{occurrence_of}(o, a) \wedge \text{prior}(F_q, o) \supset \text{holds}(F_{q'}, o)$
 for each $q' = \delta_0(q, a)$ target e-Service can do an a-transition going to state q'

 - $\forall o. \text{holds}(F_q, o) \wedge \text{poss}(a, o) \supset \text{false}$
 for each $\delta_0(q, a)$ undefined target e-Service cannot do an a-transition

 - Final $\equiv \forall q \in \neq 0 F_q$
 denotes target e-Service final states
PSL Encoding -- Details

- **Target e-Service** $E_0 = (\Sigma, Q_0, q^0_0, \delta_0, F_0)$

 - $\forall o. \text{prior}(F_q \supset \neg F_{q'}, o)$

 - $\forall o. \text{holds}(F_q, o) \supset \text{poss}(a, o)$

 $\forall o. \text{occurrence_of}(o, a) \land \text{prior}(F_q, o) \supset \text{holds}(F_{q'}, o)$ \hspace{1cm} (prec)

 $\forall o. \text{holds}(F_q, o) \land \text{poss}(a, o) \supset \text{false}$ \hspace{1cm} (eff)

 - $\forall o. \text{holds}(F_q, o) \supset \text{false}$

- $\text{Final} \equiv \forall q \in q^0 \exists q F_q$

 similar to Sit Calc!
PSL Encoding -- Details (cont.d)

• Community e-Services $E_i = (\Sigma, Q_i, q^0_i, \delta_i, F_i)$

 For all pairs of distinct states q, q' in E_i

 e-Service states are pair-wise disjoint

 \[\forall o. \text{prior} (F_q \supset \neg F_{q'}, \ o) \]

 for all pairs of distinct states q, q' in E_i

 e-Service states are pair-wise disjoint

 \[\forall o. \text{holds} (F_q, o) \supset \text{poss}_i(a, o) \quad (\text{prec}) \]

 \[\forall o. \text{occurrence_of}(o, a) \land \text{prior}(F_q, o) \supset \]

 (\text{holds}(F_{q'}, o) \land \text{holds}(\text{Step}_{ia}, o)) \lor (\text{holds}(F_q, o) \land \neg \text{holds}(\text{Step}_{ia}, o)) \quad (\text{eff}) \]

 for each $q' = \delta_i(q, a)$

 if e-Service moved then new state, otherwise old state

 \[\forall o. \text{holds} (F_q, o) \land \text{poss}_i(a, o) \supset \text{false} \]

 \[\forall o. \text{occurrence_of}(o, a) \land \text{prior}(F_q, o) \supset \]

 \[\text{holds}(F_q, o) \land \neg \text{holds}(\text{Step}_{ia}, o) \quad \text{for each } \delta_i(q, a) \text{ undef.} \]

 if e-Service cannot do a, and a is performed then it did not move

 \[\text{Final}_i \equiv \bigvee_{q \in F_i} F_q \quad \text{denotes community e-Service final states} \]
PSL Encoding -- Details (cont. d)

- Community e-Services $E_i = (\Sigma, Q_i, q^0_i, \delta_i, F_i)$
 - $\forall o. \text{prior } (F_q \supset \neg F_{q'}, o)$
 - $\forall o. \text{holds } (F_q, o) \supset \text{poss}_i(a, o)$ \hspace{1cm} (prec)
 - $\forall o. \text{occurrence of}(o, a) \wedge \text{prior}(F_q, o) \supset$
 \hspace{1cm} (eff)
 \hspace{1cm} $(\text{holds}(F_{q'}, o) \wedge \text{holds}(\text{Step}_{ia}, o)) \lor (\text{holds}(F_q, o) \wedge \neg \text{holds}(\text{Step}_{ia}, o))$
 - $\forall o. \text{holds } (F_q, o) \wedge \text{poss}_i(a, o) \supset \text{false}$
 - $\forall o. \text{occurrence of}(o, a) \wedge \text{prior}(F_q, o) \supset$
 \hspace{1cm} holds$(F_q, o) \wedge \neg \text{holds}(\text{Step}_{ia}, o)$
 - Final$_i \equiv \bigvee_{q \in \mathcal{F}_i} F_q$

similar to Sit Calc!
PSL Encoding -- Details (cont.d)

• Additional assertions:

\[\forall o. \text{poss}(a, o) \land \text{occurrence}_\text{of}(o, a) \supset \bigvee_{i=1..n} \text{step}_i \text{a } (o) \land \text{poss}_i(a, o) \]

for each action a

at least one of the community e-Services must move at each step

\[\forall o. \text{prior}(\text{Final} \supset \bigwedge_{i=1..n} \text{Final}_i, o) \]

when target e-Service is final all comm. e-Services are final

\[\text{Init} \equiv \bigwedge_{i=0..n} \text{F}_{qi0} \]

Initially all e-Services are in their initial state
Additional assertions:

- $\forall o. \text{poss}(a, o) \land \text{occurrence}_o(a) \supset \bigvee_{i=1..n} \text{step}_{ia}(o) \land \text{possi}_i(a,o)$

- $\forall o. \text{prior}(\text{Final} \supset \bigwedge_{i=1..n} \text{Final}_i, o)$

- $\text{Init} \equiv \bigwedge_{i=0..n} F_{qi0}$

similar to SIt Calc!
Info & Contacts

• Thesis dissertation scheduled for January 2005

Daniela Berardi

e-mail: berardi@dis.uniroma1.it

home page: http://www.dis.uniroma1.it/~berardi

address: Via Salaria, 113 (2 piano)
I-00198 Rome (Italy)
Back up
Execution tree

a: “search by author (and select)”
b: “search by title (and select)”
r: “listen (the selected song)”

- **Nodes**: history (sequence) of actions executed so far
- **Root**: no action yet performed
- **Successor node** $x \cdot a$ of x: action a can be executed after the sequence of action x
- **Final nodes**: the e-Service can terminate
e-Service composition

• Added value of the community:

 when a client request cannot be satisfied by any available e-Service, it may still be possible to satisfy it by combining “pieces” of e-Services in the community

• Two issues arise:
 – support for synthesizing composition:
 – automatic synthesis of a \text{coordinating program (composition)} \ldots
 – \ldots that realizes the \text{target e-Service (client request)} \ldots
 – \ldots by suitably \text{coordinating} available e-Services \textit{addressed here}

 – support for \textit{orchestration}: execution of the \text{coordinating program} \textit{not addressed here}
Formalizing e-Service composition

Composition:
- coordinating program …
- … that realizes the target e-Service …
- … by suitably coordinating available e-Services

\Rightarrow Composition can be formalized as:
- a labeling of the execution tree of the target e-Service such that
 - …
- … each action in the execution tree is labeled by the community e-Service that executes it …
- … and each possible sequence of actions on the target e-Service execution tree corresponds to possible sequences of actions on the community e-Service execution trees, suitably interleaved.
Example of composition

- **Community e-Services** *(expressed as FSMs)*

- **Target e-Service** *(again expressed as FSM)*
Example of composition

coordinating program (composition)}
Example of composition

All e-Services start from their starting state
Example of composition

Each action of the target e-Service is executed by at least one of the component e-Services
Example of composition

When the target e-Service can be left, then all component e-Services must be in a final state.
Example of composition

coordinating program (composition)
Example of composition

coordinating program (composition)
\mathcal{ALC} encoding

- **Target e-Service** $S_0 = (\Sigma, S_0, s^0_0, \delta_0, F_0)$
 - $s \sqsubseteq \neg s'$ for all pairs of distinct states in S_0

 e-Service states are pair-wise disjoint

 - $s \sqsubseteq \exists a. \top \land \forall a. s'$ for each $s' = \delta_0(s, a)$

 target e-Service can do an a-transition going to state s'

 - $s \sqsubseteq \forall a. \bot$ for each $\delta_0(s, a)$ undef.

 target e-Service cannot do an a-transition

 - $F_0 \equiv \bigcup_{s \in F_0} s$

 denotes target e-Service final states

- ...
\textbf{\textit{ALC} encoding (cont.d)}

- **Community e-Services** $S_i = (\Sigma, S_i, s^0_i, \delta_i, F_i)$
 - $s \sqsubseteq \neg s'$ \hspace{2cm} for all pairs of distinct states in S_i
 \hspace{2cm} \textit{e-Service states are pair-wise disjoint}

 $s \sqsubseteq \forall a. (\text{moved}_i \sqcap s' \sqcup \neg \text{moved}_i \sqcap s)$ \hspace{2cm} for each $s' = \delta_i(s, a)$
 \hspace{2cm} \textit{if e-Service moved then new state, otherwise old state}

 $s \sqsubseteq \forall a. (\neg \text{moved}_i \sqcap s)$ \hspace{2cm} for each $\delta_i(s, a)$ undef.
 \hspace{2cm} \textit{if e-Service cannot do a, and a is performed then it did not move}

 - $F_i \equiv \bigcup_{s \in F_i} s$
 \hspace{2cm} \textit{denotes community e-Service final states}

- \ldots
\(ALC \) encoding (cont.d)

- **Additional assertions**

 \[
 \exists a. \top \subseteq \forall a . \bigcup_{i=1,\ldots,n} \text{moved}_i \quad \text{for each action } a
 \]
 at least one of the community e-Services must move at each step

 \[
 F_0 \subseteq \bigcap_{i=1,\ldots,n} F_i
 \]
 when target e-Service is final all comm. e-Services are final

 \[
 \text{Init} \equiv s^0_0 \cap \bigcap_{i=1,\ldots,n} s^0_i
 \]
 Initially all e-Services are in their initial state
DPDL encoding

\[\Phi = \text{Init} \land ([u]\Phi_0 \land \bigwedge_{i=1,\ldots,n} [u]\Phi_i \land [u]\Phi_{\text{aux}}) \]

- Initial states of all e-Services
- DPDL encoding of \(i\)-th component e-Service
- DPDL encoding of target e-Service
- DPDL additional domain-independent conditions

DPDL encoding is polynomial in the size of the e-Service FSMs
DPDL encoding

• Target e-Service $S_0 = (\Sigma, S_0, s_0^0, \delta_0, F_0)$

in DPDL we define Φ_0 as the conjunction of:

- $s \rightarrow \neg s'$ for all pairs of distinct states in S_0

 e-Service states are pair-wise disjoint

- $s \rightarrow <a>\top \land [a]s'$ for each $s' = \delta_0(s,a)$

 target e-Service can do an a-transition going to state s'

- $s \rightarrow [a]\bot$ for each $\delta_0(s,a)$ undefined.

 target e-Service cannot do an a-transition

- $F_0 \equiv \forall s \in F_0 \ s$

 denotes target e-Service final states

• ...
DPDL encoding (cont.d)

• Community e-Services $S_i = (\Sigma, S_i, s^0_i, \delta_i, F_i)$

in DPDL we define Φ_i as the conjunction of:

1. $s \rightarrow \neg s'$ for all pairs of distinct states in S_i

 e-Service states are pair-wise disjoint

2. $s \rightarrow [a](\text{moved}_i \land s' \lor \neg \text{moved}_i \land s)$ for each $s' = \delta_i(s, a)$

 if e-Service moved then new state, otherwise old state

3. $s \rightarrow [a](\neg \text{moved}_i \land s)$ for each $\delta_i(s, a)$ undef.

 if e-Service cannot do a, and a is performed then it did not move

4. $F_i \equiv \lor_{s \in F_i} s$

 denotes community e-Service final states
DPDL encoding (cont.d)

-
 Additional assertions Φ_{aux}

 $\langle a \rangle T \rightarrow [a] \bigvee_{i=1,\ldots,n} moved_i$ for each action a

 at least one of the community e-Services must move at each step

 $F_0 \rightarrow \bigwedge_{i=1,\ldots,n} F_i$

 when target e-Service is final all comm. e-Services are final

 $Init \equiv s_0^0 \bigwedge_{i=1,\ldots,n} s_0^i$

 Initially all e-Services are in their initial state

DPDL encoding: $\Phi = Init \land [u](\Phi_0 \land \bigwedge_{i=1,\ldots,n} \Phi_i \land \Phi_{aux})$
Results

Thm: Composition exists \iff DPDL formula \(\Phi \) SAT

From composition labeling of the target e-Service one can build a tree model of the DPDL formula and viceversa.

Information on the labeling is encoded in predicates \(\text{moved}_i \).

\[\Rightarrow\] Composition existence of e-Services expressible as FSMs is decidable in EXPTIME
Results on Finite State Composition

Thm: If composition exists then Mealy composition exists.
From a small model of the DPDL formula \(\Phi \), one can build a Mealy machine.

Information on the output function of the machine is encoded in predicates moved.

\[\Rightarrow \text{Finite state composition existence of e-Services expressible as FSMs is decidable in EXPTIME} \]
Summary: The “Roman” Activity Based Model for e-Services

Service: on-line music store

choice points: the e-Service makes always the client decide what to do next (in principle, all states can be choice points).

states at which client can stop

states at which client cannot stop
Summary: Automatic e-Service composition in the “Roman” Framework

But: what if

- there does not exist an e-Service on-line music store?
- the only available e-Services are jukebox and bank?

Community of e-Services:
Summary: Automatic e-Service composition in the “Roman” Framework (cont.d)

Target e-Service (client request):
on-line music store

Community of e-Services (available e-Services):
jukebox, bank

Delegator (delegates each action of target e-Service to e-Service(s) in the community):