A Bottom-Up Approach to Automating Web Service
Discovery, Customization, and Semantic Translation

Daniel J. Mandell

Stanford University
Knowlkedge Systems Laboratory
Dept. ComputerScience, Stanford University
Stanford, CA 94305-9020, USA
1-650-723-7932

dmandell@ksl.stanford.edu

ABSTRACT

The ultimate goal for the Web services effort is seamless
interoperation among networked devices and programs
through the development of distributed computing
infrastructure and Web standards. Industry has been fast off
the mark with the development of computing infrastructure
such as NET and J2EE, Web service protocols such as SOAP,
and a communication-level description language in WSDL.
Likewise, orchestration and process modeling languages such
as XLANG, WSFL, and most recently BPEL4WS, have been
developed to represent Web service interactions through
process models. Unfortunately, we are still a long way from
seamless interoperation. Researchers in the Semantic Web
community have taken up this challenge proposing top-down
approaches to achieve aspects of Web Service interoperation
based on techniques from artificial intelligence.
Unfortunately, many of these efforts have been disconnected
from emerging industry standards, particularly in process
modeling. In this paper we take a bottom-up approach to
integrating Semantic Web technology into Web services.
Building on BPEL4WS, we present integrated Semantic Web
technology for automating customized, dynamic discovery of
Web services together with interoperation through semantic
translation. We discuss the value of semantically enriched
service interoperation and demonstrate its use in a practically
motivated example. Finally, we provide an analysis of the
forward-looking limitations of frameworks like BPEL4WS, and
suggest that Web service interoperation specifications
embrace semantic technology at a fundamental level to work
towards fully automated Web service interoperation.

Keywords

Semantic Web, Web Services, BPEL4WS, DAMLA+OIL, DAML-S,
Process Modeling, Automated Service Discovery, Automated
Semantic Translation, Ontologies

1. INTRODUCTION

For many, the long-term goal of the Web services effort is
seamless interoperation among networked programs and
devices. Once achieved, many see Web services as providing
the infrastructure for universal plug-and-play and ubiquitous
computing [30]. To integrate complex, stateful interactions
among services, most of the major industry players have
proposed some form of business process integration,
orchestration, or choreography model. These include WSCI,
BPML, XLANG, WSFL, WSCL, BPSS, the Web Services
Architecture, and most recently BPEL4WS from IBM,
Microsoft and BEA [27]. Unfortunately, as we discuss in this
paper, these standards and their associated computing

Sheila A. Mcllraith

Stanford University
Knowlkedge Systems Laboratory
Dept. ComputerScience, Stanford University
Stanford, CA 94305-9020, USA
1-650-723-7932

sam@Kksl.stanford.edu

machinery still place us a long way from seamless
interoperability.

In parallel with these industry efforts, the Semantic Web [4]
community has been developing languages and computing
machinery for making Web content unambiguously
interpretable by computer programs, with a view to automation
of a diversity of Web tasks. Efforts include the development
of expressive languages based on artificial intelligence
technology, including RDF [17], RDF(S), DAML+OIL [12,29],
and most recently a proposal for the Ontology Web Language
(OWL) [10,21,26]. In the area of Web Services, the Semantic
Web community has argued that true interoperation requires
description of Web Services in an expressive language with a
well-defined semantics. To this end, they have developed a
DAMLAOIL ontology for Web services (DAML-S) [8].
Similarly, researchers have developed automated reasoning
machinery to address some of the more difficult tasks
necessary for seamless interoperation including a richer form
of automated Web Service discovery [25], semantic translation
[20], and the ultimate challenge, automated Web Service
composition [24,22,14]. Unfortunately, most of these efforts
have been top-down approaches building on artificial
intelligence and automated reasoning technology, sometimes
grounding them in WSDL, but often times avoiding
connection with evolving industry standards.

In this paper we take a bottom-up approach to incorporating
Semantic Web technology into Web services. We argue that to
achieve the long-term goal of seamless interoperability, Web
services must embrace many of the representation and
reasoning ideas proposed by the Semantic Web community
and in particular by the Semantic Web services community.
Nevertheless, we acknowledge that Web standards defined by
industry efforts will shape the evolution of Semantic Web
services. From this viewpoint we take the leading candidate
for business process modeling on the Web, BPELAWS, and its
associated computational machinery, BPWS4J, and augment
them with Semantic Web technology. In Section 2, we provide
a reference example that we use to illustrate our contributions.
In Section 3 we introduce BPEL4WS, demonstrate its use on
the example, and characterize its level of automation. In
Section 4, we extend BPEL4WS with a Semantic Discovery
Service and introduce semantic translations to advance the
level of interoperability provided by BPEL4WS. We discuss
the architecture of our software, demonstrate it with respect to
our reference example, and analyze its merits and
shortcomings. We conclude by highlighting the distinct
features brought to automated Web service interoperation
systems through rich semantics, and suggesting that Web
service standards developers and interoperation system

designers incorporate semantic markup and reasoning into
their work to achieve seamless automation of Web services.

2. AMOTIVATING EXAMPLE

To realize the value added by automated interoperation it is
helpful to have a real-world example in mind. Consider the
task of taking out a loan on the Web. In the absence of
automation, the user invests considerable resources visiting
numerous sites, determining appropriate service providers,
entering personal information and preferences repeatedly,
integrating potentially heterogeneous information, and
waiting for responses. We would prefer that the user enters
information once and receives the expected results from the
most appropriate services with minimal additional assistance.
One possible interaction model follows:

REQUEST:

_LOAN INFO: amount, type,
term, schedule

_PERSONAL INFO: name, ss#
_USER PREFS: location, etc

LOAN RESULT

Loan Finding Service

LOAN RESULT:

CREDIT REPORT: _LOAN INFO
_Address, _Approved,
_Court Judgements, _Interest Rate

_Bank Data

LOAN PROFILE:
_CREDIT REPORT,
_LOAN INFO

Credit Assessor Lender Service

Figure 1. An interaction model for the example domain.

In this scenario, the user sends a single request to a loan
finding service containing personal information, the type of
loan desired, and some provider preferences. The loan finder
distributes its work among two partner services: a credit
assessor, which consumes the user’s personal information and
provides a credit history report, and a lender service, which
consumes a credit report and a loan request and returns a
rejection or a loan offer and its terms. The loan finder first
invokes a credit assessor to generate a credit report for the
user, which it then passes to the lender service along with the
user’s personal information. The lender service generates a
result, which the loan finder reports to the user. It is no longer
required that the user enter information multiple times,
determine which services are appropriate, or standby to bridge
output from one service to another as input. These
responsibilities have been offloaded to the loan finding
service and its service provider—the party responsible for the
form and function of the loan finding service.

This interaction model is appealing for the user, but switching
perspectives to that of the service provider, it remains to show
how service partners are selected, ordered, invoked, and
integrated.

3. AUTOMATED WEB SERVICE
EXECUTION

A number of specifications and software packages are available
to automate the execution of hand-written Web service
compositions. Among them are BPEL4WS [7], WSCI [2], and
BPML [1]. In this section we will focus on the most recently
leading player, BPEL4WS.

3.1 BPEL4WS and BPWS4J

The BPELAWS specification co-authored by IBM, Microsoft
and BEA merges ideas from Microsoft’s XLANG [28] and
IBM’s WSFL [18]. It provides a notation for describing
interactions of Web services as business processes, following
in the tradition of workflow modeling [31,13]. Workflow in
BPELAWS is directed by traditional control structures like if,
then, else, and while-loop. Services are integrated by treating
them as partners that fill roles in a BPEL4WS process model.
The communication-level parameters of the partner services are
described in accompanying WSDL [6] documents. The process
model describes a program that orchestrates the interaction of
the service partners. The key components of the process model
are: partners, which associate a Web service defined in an
accompanying WSDL document with a particular role;
containers, which describe the messages passed between
partners and correspond to messages in accompanying WSDL
documents; fault handlers, which deal with known and
unexpected exceptions in the spirit of the try-catch
programming construct; and flow, which lists the activities
defining the control flow of the process.

The BPWS4J engine [15], released by IBM alongside of
BPEL4WS, implements a subset of the features defined in the
BPELAWS specification. The BPWS4J engine consumes a
BPEL4WS document and WSDL documents defining the
bindings for the BPEL4WS process and its partners. It then
establishes a single endpoint for accessing the BPEL4AWS
process as a Web service.

3.2 BPWS4J and the Loan Example

In order to model the workflow in Figure 1, a service provider
writes each of the above elements into a BPEL4WS document.
For our current purposes it is worth examining the
<partners> element.

In a BPEL4WS document modeling the interaction in Figure 1,
the loan finding service interacts with three <partners>
corresponding to the user, the credit assessor service, and the
lender service. Note that the loan finding service in Figure 1 is
not a partner because it corresponds to the BPEL4WS process
itself. The element might be written as follows:

<partners>
<partner name="user"
serviceLinkType="1ns:loanCustomerLinkType"
partnerRole="user"/>
<partner name="assessor"
serviceLinkType="1ns:USCreditAssessorLinkType"
partnerRole="assessor"/>
<partner name="lender"
serviceLinkType="1ns:loanLenderLinkType”
partnerRole="lender"/>
</partners>

The serviceLinkType attribute selects a communication-
level agreement between partners. The partnerRole attribute
identifies which role the partner plays and which the loan
finding service plays. Each role is bound elsewhere in the
BPEL4WS element space to a WSDL portType.

3.3 Characterization of BPWS4J Automation

Aside from automating Web service execution with BPWS4J,
BPELAWS opens the way for automated service discovery by
leaving service partners unbound at design time.
Theoretically, the binding of BPELAWS service partners to
physical ports can occur at runtime. WSDL portType
definitions, however, are limited to the expressiveness of XML
and XMLSchema. The specification does not suggest another
formal representation for describing partners outside
BPEL4WS, or how representations of services may be queried
to locate appropriate partners. Moreover, the version of
BPWSA4J available at the time of writing omits the service
reference assignment feature, so a dynamically discovered
service could not be referenced from within BPWS4J]. BPWS4]J,
then, enables automated Web service execution, but not
automated discovery, and BPEL4AWS lacks inherent
exploitation of rich, semantic descriptions of services for
broader service interoperation.

Without automatic Web service discovery, the service provider
is responsible for choosing service partners a priori, and
preconcerting the service partners into an effective unit (e.g.,
by writing a BPELWS document). Because partner services are
chosen prior to receiving the user’s request, the system cannot
customize partner selection for the user’s specific needs or
preferences. It is possible that the service selects suboptimal
service partners, either because the service provider lacks a
comprehensive list of potential partners at design time, or
because of the difficulty in finding partners whose solution
generalizes for all users. In the case of the loan example, it is
possible that the user prefers to use an in-state lender because
in-state loans offer tax incentives from the wuser’s state
government. If the service provider defines the lending partner
prior to the user’s request, the user’s preference is ignored.

Further, restricting service descriptions to the expressivity of
XML prevents the integration of service partners that operate
on messages that have different syntax but are semantically
compatible. For example, perhaps the only appropriate credit
assessor for an ex-UK resident provides UKCreditReports
while the lending service consumes USCreditReports. Even
if these messages differed only in their representation of dates,
an interoperation system that cannot recognize the semantic
compatibility of the credit reports could fail to realize a
potentially successful integration.

Finally, discovering and integrating the service partners
manually places greater responsibility and maintenance time
demands on the service provider than in the automated case.

4. AUTOMATED SERVICE DISCOVERY,
CUSTOMIZATION, AND SEMANTIC
TRANSLATION

In this section we present work that extends BPWS4J] with
customized, automated service discovery and semantic
translation to address the shortcoming presented in Section 3.
To enable these features, we need to address three issues:

1. How to formally represent descriptions of potential
service partners

2. How to store, query and reason about such descriptions to
discover appropriate partners

3. How to integrate discovered partners into the BPWS4J
engine

Our approach adopts Semantic Web technologies to address
the first issue, and these are described in Section 4.1. In

Section 4.2, we present novel work in the form of a Semantic
Discovery Service, which addresses the last two issues.

4.1 Supporting Technologies

We adopt several key technologies to enable the description of
services in a computer interpretable format and the discovery
of services with desired properties.

4.1.1 DAML-S

DAML-S is an ontology for describing Web Services based on
DAMLAOIL. As a DAMLAOIL ontology, DAML-S has a well-
defined semantics, making it computer-interpretable and
unambiguous. It also enables the definition of Web services
content vocabulary in terms of objects and complex
relationships between them, including class, subclass, and
cardinality restrictions.

The DAML-S upper ontology comprises three components:

1. ServiceProfile - Relates and builds upon the type of
content in UDDI, describing the properties of a service
necessary for automatic discovery, such as what the
services offers, its inputs and outputs, and its
preconditions and effects.

2. ServiceModel - Describes a service's process model (the
control flow and data-flow involved in using the service).
It is designed to enable automated composition and
execution of services.

3. ServiceGrounding - Connects the
description to communication-level
message descriptions in WSDL.

process model
protocols and

In this section, we focus on the ServiceProfile as a declarative
descriptor of Web service properties enabling automated,
customized service discovery and semantic translation. We
will collect DAML-S descriptions of service profiles into a
repository and exploit their semantics to query for partners
based on a description of the partners’ required properties.

4.1.2 DAML Query Language

We adopt the DAML Query Language (DQL) [11] as our formal
language and protocol for querying repositories of DAML-S
service profiles. DQL defines the construction of queries over a
repository comprised of DAML+OIL sentences. In our case, the
repository is a knowledge base (KB) of DAML-S service
profiles. DQL queries are handled by a DQL server, which
interfaces with an automated reasoner operating over the KB.
The reasoner determines which profiles satisfy the query
restrictions. The DQL server answers the query by returning
matching profiles in a series of answer bundles.

4.1.3 Java Theorem Prover

We use the Java Theorem Prover (JTP) [16] as the DQL server’s
automated reasoner. JTP is a hybrid reasoning system based on
first-order logic model elimination. JTP is a particularly
compelling candidate for our work because of its special
purpose DAMLAOIL reasoner. Since the reasoner is based on
the axiomatic semantics of DAMLAOIL, performance can be
augmented by efficient storage of DAMLAOIL sentences as
triples and pre-computation of common queries.

4.2 The Semantic Discovery Service

DAML-S provides us with means to formally represent the
form and function of Web services, and DQL/JTP provide us
with sufficiently powerful machinery to query such
descriptions. With these technologies in hand, it remains to
integrate semantic service description querying into BPWS4J.

Since the current release of BPWS4J is not immediately
extensible, we construct a Semantic Discovery Service (SDS) to
work within BPWS4J’s perspective as an aggregator of
existing services.

4.2.1 Form and Function of the SDS

The SDS sits between a BPWS4J process and its potential
service partners. Instead of routing requests to previously
selected partners, BPWS4J directs them to the SDS through a
locally bound Web service interface. In order for the SDS to
dynamically discover customized service partners, SDS
messages contain (1) the parameters to be sent to a discovered
service partner, and (2) the required service partner attributes,
including functional and wuser constraints, expressed in
DAML-S sentences. The SDS then locates appropriate service
partners and serves as a dynamic proxy between the BPWS4J
engine and the discovered partners. With this interface come
two important properties of interactions with the SDS:

1. The SDS is agnostic as to the content of the service
descriptions and invocation messages it receives.

2. The SDS is stateless, with no knowledge of prior
interactions, and no service-specific properties.

These properties grant the SDS portability between any
BPWS4J actions and processes.

4.3 Automated Service Customization
Automated service customization, refers to the automatic
selection of partners to meet preferences and constraints
specific to each user. A wuser’s request might contain
preferences for a service’s physical location, side-effects,
quality of service and security guarantees, and many others.

In our approach to automated service customization, user
constraints are encoded as DAML-S sentences in requests to
BPWS4J. BPWS4J executes its process model, invoking the
SDS with the DAML-S constraints whenever the workflow calls
for a partner service. When invoked, the SDS sets to work at
discovering a service that meets the constraints encoded in the
request. The DAML-S restrictions are wrapped inside a DQL
query and sent to the DQL server. The DQL server invokes the
JTP DAMLAOIL reasoner to compute the set of DAML-S
profiles meeting the query criteria. Matching DAML-S profiles
are returned to the SDS as answer bundles. The SDS selects a
partner from the answer bundles and invokes the partner’s
endpoint with the message parameters supplied by BPWSA4J.
The partner does its work and responds to the SDS, which in
turn forwards the response to BPWS4J. BPWS4J recovers flow
control, and continues executing the process model, invoking
the SDS whenever a customized Web service invocation is
needed (see Figure 2).

Discoverad
Service
Partner

(6) Partner executes
and returns to SDS

(7) SDS returns partner
response to BPWS4J

v

BPWS4J SDS

{3) SDS invokes a discovered
service with Invecation
Parameters from BPWS4J

{4) DQL Server returns matching
profiles in answer bundles

(1) BPWS4.J sends Invocation

Parameters and DAML-S l;t?v:e?:'dwbe; DAML-S
Service Requirements to SDS |2) SDS sends DAL JTP Profile KB

query to DOL server
based on DAML-S
Service Requirements

(3) DAL server uses
JTP to find service
profiles in the DAML-S
KB matching the query

Figure 2. Interaction flow between BPWS4J, SDS,
DQL server, and discovered service partners

4.4 Automated Semantic Translation

A key feature of semantically enriched data structures is their
translatability within the context of automated reasoning. An
automated reasoner can exploit the semantic equality of
syntactically distinct classes to gain a greater reasoning space.
In the context of Web services, semantic translation refers to
redefining well-defined data types in terms of their
relationships to one another via translational axioms.
Semantic translation increases Web service interoperability in
a number of ways, including the ability to automatically
translate the inputs and outputs of service partners so they
may interact seamlessly.

The SDS provides automated semantic translation for Web
service discovery. Our approach uses a recursive back-
chaining algorithm to determine a sequence of service
invocations, or service chain, which takes the input supplied
by BPWS4J and produces the output desired by BPWS4J. Our
translation axioms are encoded into translation programs
exposed as Web services. The algorithm invokes the DQL
server to discover services that produce the desired outputs. If
the SDS does not have a required input, the algorithm searches
for a translator service that outputs the required input and
adds it to the service chain. The process is recursive and
terminates when it successfully constructs a service chain, or
the profiles in the KB (or some bounded subset) are exhausted.

The following pseudocode representation of the algorithm
returns a service chain, if one exists in the KB, producing the
desired output while consuming only the available inputs:

Initialization:

weHave = {inputs provided by BPWS4J process};
weWant = {output desired by BPWS4J process};
Step:

findServiceChain (weHave, weWant) {
svcs = getServicesOutputtingWeWant (weWant);
foreach service in sves {
chain = new chain;
foreach input in service.inputs {
if input not in weHave {
newSvcs = findServiceChain(weHave, service.inputs);
chain.add(newSvcs);

}

if all service.inputs in weHave {
chain.add(service);
return chain;

return null; // no chain found

Note that this algorithm fits our purposes for a small DAML-S
KB, but the worst-case execution time grows exponentially in
the number of inputs we allow. To improve performance we
could utilize a heuristic that eliminates low scoring services
from the svcs list based on a scoring function, e.g., the
minimal distance between inputs we desire and the service’s
outputs in a taxonomy tree, as described in [25]. Additionally,
we could favor service partners requiring fewer inputs.

4.5 SDS and the Loan Example

We now consider the SDS in the context of the loan finding
example from Sections 2 and 3. Assume that the user has
recently moved to California, USA from the United Kingdom,
so that the only potential credit-reporting agency is based in
the UK. This credit assessor produces credit reports of class
UKCreditReport. BPWS4] must then invoke a service that
inputs a UKCreditReport and outputs a LoanResult.
Assume further that the user must get a loan from a US lender
and, moreover, wishes to borrow from a California-based
lender (to take advantage of in-state tax incentives). The SDS
may locate a CA-based lender using automated customization,

but if the only such lender available requires a
UsCreditReport as an input the SDS would fail to discover
an appropriate lender. The BPWS4J process would report that
the request could not be completed.

With semantic translation, the wuser’s request becomes
satisfiable. We introduce into the DAML-S KB the profile for a
DateTranslator service that translates between
USCreditReport and UKCreditReport classes. Assume that
this service implements a semantic translation axiom that, for
simplicity, properly declares that the credit reports are
identical except that the US version represents dates as
MM/DD/YYYY, while the UK version uses DD/MM/YYYY. Since
the DateTranslator service requires a UKCreditReport as
an input, and the SDS has one available, the algorithm adds the
DateTranslator to the chain. The service chain
(assessor—DateTranslator—lender) now consumes a
UKCreditReport and produces a LoanResult as desired by
the BPWS4J process. The SDS executes the service chain and
returns the LoanResult to BPWS4J.

4.6 Characterization of SDS Automation

We now characterize the level of automation provided by
BPWS4J extended with a Semantic Discovery Service within
the broader context of Web service interoperation. As in
Section 3, the BPWS4J engine provides automated Web
service execution given a BPELAWS process model. In this
section, we introduce the Semantic Discovery Service, which
extends BPWS4J with automated service discovery and
semantic translation. These capabilities enlarge the space of
potentially successful executions, and allow the framework to
account for user-defined constraints in partner selection.

The SDS does not, however, enable automated Web service
composition. This notion is regarded in the Semantic Web
community as the determination of an execution plan to
accomplish an objective given a current state, and adapting
that plan as state changes without human intervention. Despite
the fact that our implementation does discover and execute a
sequence of services to produce a desired output from
provided inputs, the fundamental workflow defined in the
BPEL4WS document is intentionally unchanged, as we discuss
below.

The reasoning performed by the SDS is purely communicative,
and ignores the preconditions and effects of the services
employed. To reason about preconditions and effects is to
reason about what a service does. In the case of BPWS4J, the
service provider performs this reasoning manually by defining
a BPEL4WS process that utilizes a predefined number of
service partners with expected roles and an execution ordering.
As such, the service provider imposes a particular
decomposition of the process, making it inappropriate for the
SDS to perform automated service composition for two
reasons. First, recomposing a process without knowing the
intended side effects of the original composition (i.e., those
intended by the service provider) runs the risk of composing
services with unintended side effects. Second, even if the SDS
did have a formal description of the expected effects of the
service partners — a possibility with DAML-S — recomposing
the process into a new workflow reproduces the work of
BPWS4J and the service provider, so the SDS would be
replacing the very system it is supposed to complement.
Enabling automated Web service composition within BPWS4]J
and similarly featured frameworks requires fundamentally
redefining their roles and capabilities towards reasoning about
abstract objectives and services described in languages with
well-defined semantics.

S. CONCLUSION

Seamless interoperability among networked programs and
devices is critical for Web services to provide an infrastructure
for the vision of ubiquitous computing. We argued here that
industry has taken us a step in this direction with computing
machinery for automated service execution, while the Semantic
Web community has developed powerful representation and
reasoning technology but has remained largely disconnected
from the industrial effort. In acknowledgement of the fact that
Web service technology will continue to evolve from
emerging industry standards, we developed software from the
bottom-up that extends industrial machinery with Semantic
Web technology to enable automated service discovery,
customization, and semantic translation. By integrating our
technology, the industrial system gained the following
capabilities:

1. Automatic, runtime binding of service partners

2. Selection between multiple service partners based on
user-defined preferences and constraints

3. Integration of service partners with syntactically distinct
but semantically translatable service descriptions

We further argued that these capabilities approach the limit of
automated service interoperation with current industrial
machinery. Extending manual composition frameworks with
automated composition machinery supplants provider-defined
workflows with potentially undesirable recompositions.
Achieving automated Web service composition requires a
fundamental shift in industrial frameworks from executing
predefined process models to computing and adapting
execution plans from abstract objectives. In particular, in order
for industry to achieve this shift, it is critical that:

1. Web service providers publish unambiguous, computer-
interpretable declarations of Web service form and
function, at a level of detail commensurate with the task,
and in a language with a well-defined semantics

2. Web service interoperation frameworks embed automated
reasoning technology into their systems and
specifications that is capable of reasoning about semantic
descriptions of Web services.

With the Semantic Web grounded in firm industrial support,
we can begin to attain the manifold benefits of fully
integrated, Web-wide distributed computation.

6. ACKNOWLEDGEMENTS

We would like to acknowledge Jessica Jenkins for her help in
writing DAML-S queries and profiles and Rob McCool for his
help in integrating DQL with JTP. We also thank Francisco
Curbera and Bill Nagy for helpful conversations about
BPWS4J, and Srini Narayanan for his wuseful thoughts
throughout this work. Finally we gratefully acknowledge the
financial support of the US Defense Advanced Research
Projects Agency DARPA Agent Markup Language (DAML)
Program #F30602-00-2-0579-P00001.

7. REFERENCES

[1] Arkin., A. Business Process Modeling Language.
http://www.bpmi.org/bpml.esp.

[2] Arkin, A., Askary, S., Fordin, S., Jekeli,, W.,
Kawaguchi, K., Orchard, D., Pogliani, S., Riemer, K.,
Struble, S., Takacsi-Nagy, P., Trickovic, 1., Zimek,
S. Web Service Choreography Interface.
http://wwws.sun.com/software/xml/developers/wsci/.

[3] Bellwood, T., Clément, L., Ehnebuske, D.,
Hately, A., Hondo, M., Husband, Y.,
Januszewski, K., Lee, S., McKee, B., Munter, J.,
von Riegen, C. UDDI Version 3.0, 2002.
http://www.uddi.org/pubs/uddi-v3.00-published-
20020719.htm

[4] Berners-Lee, T., Hendler, J., Lassila, O. The Semantic
Web, Scientific American, May, 2001.

[5] Box, D., Ehnebuske, D., Kakivaya, G., Layman, A.,
Mendelsohn, N., Nielsen, H., Thatte, S., Winer, D.
Simple Object Assess Protocol (SOAP) 1.1. W3C
Technical report, 2000. http://www.w3.org/TR/SOAP/

[6] Christensen, E., Curbera, F., Meredith, G., and
Weerawarana, S. Web Services Definition Language.
Technical report, W3C, 2001.
http://www.w3c.org/TR/wsdl.

[7] Curbera, F., Goland, Y., Klein, J., Leymann, F.,
Roller, D., Thatte, S., Weerawarana, S. Business
Process Execution Language for Web Services.
http://www.ibm.com/developerworks/library/ws-bpel/

[8] DAML Services Coalition. DAML-S versions 0.5 ,
0.6 and 0.7. http://www.daml.org/services/

[91 DAML Services Coalition (alphabetically A.
Ankolekar, M. Burstein, J. Hobbs, O. Lassila, D.
Martin, D. McDermott, S. Mcllraith, S. Narayanan,
M. Paolucci, T. Payne, K. Sycara). DAML-S: Web
Service Description for the Semantic Web. To appear
in the Proceedings of the International Semantic Web
Conference (ISWC), July, 2002.

[10] Dean, M., Connolly, D., van Harmelen, F., Hendler,
J., Horrocks, 1., McGuinness, D., Patel-Schneider, P.,
and Stein, L. OWL Web Ontology Language 1.0
Reference. http://www.w3.org/TR/2002/WD-owl-ref-
20020729/

[11]Fikes, R., Hayes, P., Horrocks, I. DAML Query
Language, Abstract Specification, 2002.
http://www.daml.org/2002/08/dql/dql

[12] Fikes, R. and McGuinness, D. An Axiomatic
Semantics for RDF, RDF-S, and DAML+OIL,
Manuscript. March, 2001.
http://www.daml.org/2001/03/axiomatic-
semantics.html

[13] Georgakopoulos, D., Hornick, M., Shet, A. An
Overview of Workflow Management: From Process
Modeling to Workflow Automation Infrastructure.
Distributed and Parallel Databases, 3(2):119-153,
1995.

[14]Hendler, J. and McGuinness, D. The DARPA Agent
Markup Language. IEEE Intelligent Systems, Tends
and Controversies, pp. 6-7, November/December
2000.

[1511IBM. BPWSA4]J.
http://www.alphaWorks.ibm.com/tech/bpws4;j

[16] Java Theorem Prover.
http://www ksl.Stanford. EDU/software/jtp/.

[17] Lassila, O., Swick, R. Resource Description
Framework (RDF) Model and Syntax

Specification.W3C Recommendation, 22 February,
1999. http://www.w3.org/TR/REC-rdf-syntax.

[18] Leymann, F. Web Services Flow Language.
http://www-3.ibm.com/software/solutions/webservices/
pdf/WSFL.pdf

[19]McDermott, Drew. "Estimated-Regression Planning
for Interactions with Web Services", Proceedings of
the Al Planning Systems Conference (AIPS'02), June
2002.

[20] McDermott, D., Burstein, M., and Smith, D.
Overcoming ontology mismatches in transactions with
self-describing agents. In Proc. Semantic Web Working
Symposium, pages 285-302, 2001

[21]McGuinness, D. and van Harmelen, F. Feature
Synopsis for OWL Lite and OWL.
http://www.w3.0org/TR/2002/WD-owl-features-
20020729/

[22] Mcllraith, S. and Son, T. Adapting Golog for
Composition of Semantic Web Services. Proceedings
of the Eighth International Conference on Knowledge
Representation and Reasoning (KR2002), April, 2002.

[23] Mcllraith, S., Son, T.C. and Zeng, H. Semantic Web
Services. IEEE Intelligent Systems. Special Issue on
the Semantic Web. 16(2):46-53, March/April, 2001.
Copyright IEEE, 2001.

[24] Narayanan, S. and Mcllraith, S. Simulation,
Verification and Automated Composition of Web
Services. To appear in the Proceedings of the Eleventh
International World Wide Web Conference (WWW-11),
May, 2002.

[25] Paolucci, M., Kawamura, T., Payne, T., Sycara, K.
Semantic Matching of Web Services Capabilities. To
appear in Proceedings of the 1st International
Semantic Web Conference (ISWC), 2002.

[26] Patel-Schneider, P., Horrocks 1., and van Harmelan, F.
OWL Web Ontology Language 1.0 Abstract Syntax.
http://www.w3.0rg/TR/2002/WD-owl-absyn-
20020729/

[27] Proposal for Web Services Choreography Working
Group Charter. W3C Architecture Domain.
http://www.w3.0rg/2002/ws/arch/2/09/chor-
proposal.html

[28] Thatte, S. XLANG: Web Services for Business
Process Design
http://www.gotdotnet.com/team/xml_wsspecs/xlang-
c/default.htm

[29] van Harmelen, F. and Horrocks, I. FAQs on OIL: the
Ontology Inference Layer. IEEE Intelligent Systems,
Trends and Controversies, pp. 3-6,
November/December, 2000.

[30] Weiser, M. "Some Computer Science Problems in
Ubiquitous Computing," Communications of the
ACM, July 1993

[31]Workflow Management Coalition. The Workflow
Reference Model. Document Number TC00-1003,
Workflow Management Coalition Office, Avenue
Marcel Thirty 204, 1200 Brussels, Belgium, 1994.

