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Abstract

The Internet is not only providing data for users to browse, but also databases to query, and
software agents to run. Due to the exponential increase of deployed agents on the Internet, automating
the search and selection of relevant agents is essential for both users and collaboration among di�erent
software agents. This paper �rst describes the agent capability description language Larks. Then
we will discuss the matchmaking process using Larks and give a complete working scenario. The
paper concludes with comparing our language and the matchmaking process with related works.
We have implemented Larks and the associated powerful matchmaking process, and are currently
incorporating it within our RETSINA multi-agent infrastructure framework.
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1 Introduction

Nowadays the Internet is not only providing data for users to browse, but also databases to query, and
software agents to run. Due to the exponential increase of deployed agents on the Internet, automating
the searching and selection of relevant agents is essential for both users and the software agent society
in several ways. Firstly, novice users in the cyberspace may have no idea where to �nd the service, what
agents are available for doing their job. Secondly, experienced users may not be aware of every change
on the Internet. Relevant agents may appear and disappear over time. Thirdly, as the number and
sophistication of agents on the Internet increase, there is an obvious need for a standardized, meaningful
communication among agents to enable them to perform collaborative task execution.

To facilitate the searching and interoperation among agent on the Internet, we proposed the RETSINA
multi-agent infrastructure framework[18]. In this framework, we distinguish two general agent categories,
service providers and service requester agents. Service providers provide some type of service, such as
�nding information, or performing some particular domain speci�c problem solving (e.g. number sorting).
Requester agents need provider agents to perform some service for them. Since the Internet is an open
environment, where information sources, communication links and agents themselves may appear and
disappear unpredictably, there is a need for some means to help requester agents �nd providers. Agents
that help locate others are called middle agents.

We have identi�ed di�erent types of middle agents on the Internet, such as matchmakers (yellow page
services), brokers, billboards, etc., and experimentally evaluated di�erent protocols for interoperation
between providers, requesters and various types of middle agents[2]. We have also developed protocols
for distributed matchmaking [7]. The process of �nding an appropriate provider through a middle agent
is called matchmaking. It has the following general form (Figure 1):

� Provider agents advertise their capabilities such as know-how, expertise, and so on, to middle agents.

� Middle agents store these advertisements.
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Figure 1: Matchmaking using Larks: An Overview

� A requester asks some middle agent whether it knows of providers with desired capabilities.

� The middle agent matches the request against the stored advertisements and returns the result.

While this process at �rst glance seems very simple, it is complicated by the fact that providers and
requesters are usually heterogeneous and incapable of understanding each other. This di�culty gives rise
to the need for a common language for describing the capabilities and requests of software agents in a
convenient way. In addition, one has to devise a mechanism for matching descriptions in that language.
This mechanism can then be used by middle agents or users to e�ciently select relevant agents for some
given tasks.

In the following, we �rst describe the agent capability description language Larks. Then we will
discuss the matchmaking process using Larks and give a complete working scenario. The paper concludes
with comparing our language and the matchmaking process with related works. We have implemented
Larks and the associated powerful matchmaking process, and are currently incorporating it within our
RETSINA multi-agent infrastructure framework [18].

2 The Agent Capability Description Language Larks

2.1 Desiderata for an Agent Capability Description Language

There is an obvious need to describe agent capabilities in a common language before any advertisement,
request or even matchmaking among the agents can take place. In fact, the formal description of capabil-
ities is one of the di�cult problems in the area of software engineering and AI. Some of the main desired
features of such a agent capability description language (ACDL) are the following.

� Expressiveness. The language should be expressive enough to represent not only data and knowl-
edge, but also the meaning of program code. Agent capabilities should be described at an abstract
rather than implementation level. Most of existing agents should be able to be distinguished by
their descriptions in this language.

� Inferences. Inferences on descriptions written in this language should be supported. Automated
reasoning and comparison on the descriptions should be possible and e�cient.
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� Ease of Use. Descriptions should not only be easy to read and understand, but also easy to write
by the user. The language should support the use of domain or common ontologies for specifying
agents capabilities.

� Application in theWeb. One of the main application domains for the language is the speci�cation
of advertisements and requests of agents in the Web. The language allows for automated exchange
and processing of information among these agents.

There are many program description languages,like Z[13], to describe the functionalities of programs.
These languages concern too much detail to be useful for the searching purpose. Also, reading and
writing speci�cations in these languages require sophisticated training. On the other hand, the interface
de�nition languages, like IDL, and WIDL, go to the other extreme by omitting the functional descriptions
of the services at all. Only the input and output information are provided.

In AI, knowledge description languages like KIF are meant to describe the knowledge instead of the
actions of a service. The action representation formalisms like STRIPS are too restrictive to represent
complicated service. Some agent communication languages like KQML and FIPA ACL concentrate on
the communication protocals (message types) between agents but leave the content part of the language
unspeci�ed.

In Internet computing, various description format are being proposed, notably the WIDL and the
Resource Description Framework(RDF)[14]. Although the RDF also aims at the interoperablity between
Web applications, it is rather intended to be a basis for describing metadata. RDF allowes di�erent
vendors to describe the properties and relations between resources on the Web. That enables other
programs, like Web robots, to easily extract relevant information, and to build a graph structure of
the resources available on the Web, without the need to give any speci�c information. However, the
description does not describe the functionalities of the Web services.

Since none of those languages satis�es our requirements, we propose an ACDL, called Larks (Language
for Advertisement and Request for Knowledge Sharing), that enables for advertising, requesting and
matching agent capabilities.

2.2 Speci�cation in Larks

A speci�cation in Larks is a frame with the following slot structure.

Context Context of speci�cation
Types Declaration of used variable types
Input Declaration of input variables
Output Declaration of output variables
InConstraints Constraints on input variables
OutConstraints Constraints on input and output variables
ConcDescriptions Ontological descriptions of used words

The frame slot types have the following meaning.

� Context The context of the speci�cation in the local domain of the agent.

� Types Optional de�nition of the data types used in the speci�cation.

� Input and Output Input/output variable declarations for the speci�cation. In addition to the usual
type declaration, there may have concept attachment. The concept itself is de�ned in the concept
description slot ConcDescriptions.

� InConstraints and OutConstraints Logical constraints on input/output variables that appear in
the input/output declaration part. The constraints are restricted to be Horn clauses.
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� ConcDesriptions Optional description of the meaning of words used in the speci�cation. The
description relies on concepts in a given local domain ontology. Attachement of a concept C to a
word w in any of the slots above is done in the form: w*C. That means that the concept C is the
ontological description of the word w. The concept C is included in the slot ConcDescription.

Every speci�cation in Larks can be interpreted as an advertisement as well as a request; this depends
on the purpose for which an agent sends a speci�cation to some matchmaker agent(s). Every Larks

speci�cation must be wrapped up in an appropriate KQML message by the sending agent indicating if
the message content is to be treated as a request or an advertisement.

2.3 Using Domain Knowledge in Larks

Larks o�ers the option to use application domain knowledge in any advertisement or request. This is
done by using a local ontology for describing the meaning of a word in a Larks speci�cation. Local
ontologies can be formally de�ned using concept languages such as Itl.

The main bene�t of that option is twofold: (1) the user can specify in more detail what he is request-
ing or advertising, and (2) the matchmaker agent is able to make automated inferences on such kind
of additional semantic descriptions while matching Larks speci�cations, thereby improving the overall
quality of matching.

Example 2.1: Finding informations on computers

Suppose that a provider agent such as, e.g., HotBot, Excite, advertises the capability to �nd informations
about any type of computers. The administrator of the agent may specify that capability in Larks as
follows.

FindComputerInfo

Context Computer*Computer;
Types InfoList = ListOf(model: Model*ComputerModel,

brand: Brand*Brand,
price: Price*Money, color: Color*Colors);

Input brands: SetOf Brand*Brand;
areas: SetOf State;
processor: SetOf CPU*CPU;
priceLow*LowPrice: Integer;
priceHigh*HighPrice: Integer;

Output Info: InfoList;
InConstraints

OutConstraints sorted(Info).

ConcDescriptions Computer = (and Product (exists has-processor CPU)
(all has-memory Memory) (all is-model ComputerModel));
LowPrice = (and Price (ge 1800)(exists in-currency aset(USD)));
HighPrice = (and Price (le 50000)(exists in-currency aset(USD)));
ComputerModel =
aset(HP-Vectra,PowerPC-G3,Thinkpad770,Satellite315);
CPU = aset(Pentium,K6,PentiumII,G3,Merced)
[Product, Colors, Brand, Money]

�

Most words in this speci�cation have been attached with a name of some concept out of a given on-
tology. The de�nitions of these concepts are included in the slot ConcDescriptions. Concept de�nitions
which were already sent to the matchmaker are enclosed in brackets. In this example we assume the
underlying ontology to be written in the concept language Itl[17].
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3 The Matchmaking Process Using Larks

3.1 Di�erent Types of Matching in Larks

Agent capability matching is the process of determining whether an advertisement registered in the
matchmaker matches a request. Before we go into the details of the matchmaking process, we should
clarify the various notions of matches of two speci�cations.

� Exact Match The most accurate match is when both descriptions are equivalent, either equal
literally, or equal by renaming the variables, or equal logically obtained by logical inference. This
type of matching is the most restrictive one.

� Plug-In Match A less accurate but more useful match is the so-called plug � in match. Roughly
speaking, plug-in matching means that the agent which capability description matches a given
request can be "plugged into the place" where that request was raised. As we can see, exact match
is a special case of plug-in match, i.e., wherever two descriptions are exact match, they are also
plug-in match.

A simple example of a plug-in match is that of the match between a request to sort a list of integers
and an advertisement of an agent that can sort both list of integers and list of strings. This example
is elaborated in section 4.

� Relaxed Match The least accurate but most useful match is the so-called relaxed match. Relaxed
match will not tell whether one description can be reused by another. Instead it determines how
close the two descriptions are by returning a numerical distance value. Two descriptions match if
the distance value is smaller than a preset threshold value.

An example of a relaxed match is that of the request to �nd the place (or address) where to buy
a Compaq Pentium-233 computer and the capability description of an agent that may provide the
price and contact phone number for that computer dealer.

Di�erent users in di�erent situation may want to have di�erent types of matches. Thus, we did provide
the matchmaker agent with several kinds of �lters.

3.2 The Filtering Stages of the Matchmaking Process

The matching engine of the matchmaker agent contains �ve di�erent �lters:

1. Context matching,

2. Pro�le comparison,

3. Similarity matching,

4. Signature matching, and

5. Constraint matching.

The �rst three �lters are meant for relaxed matching, and the signature and semantical matching
�lter are meant for plug-in matching 1. Based on the given notions of matching we did implement four
di�erent modes of matching for the matchmaker:

1. Complete Matching Mode. All �lters are considered.

2. Relaxed Matching Mode. The context, pro�le, and similarity matching is done.

3. Pro�le Matching Mode. Only the context matching and comparison of pro�les is performed.

1The computational costs of these �lters are in increasing order.
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4. Plug-In Matching Mode. In this mode, the matchmaker performs the signature and semantical
matching only.

Users may select any combinations of these �lters according to their demand. For example, when
e�ciency is the major concern, one may use only the context and pro�le �lter. On the other hand, when
a user or agent want to �nd some agents that can perform the task exactly he wants, then he must use
the signature and constraint �lters to �nd the plug-in matches. We will now describe each �lter in a more
detail.

3.2.1 Context Filter

It is obvious that any matching of two speci�cations has to be in an appropriate context. In Larks

there are two possibilities to deal with that. First, by comparing words in the Context slot of considered
speci�cations.

When comparing two speci�cations it is assumed that their domains are the same (or atleast suf-
�ciently similar) as long as (1) the real-valued distances between these words do not exceed a given
threshold and (2) subsumption relations among attached concepts of most similar words are the same.
The matching process only proceeds if that is true.

3.2.2 Pro�le Filter

Although the context matching is e�cient, it does not consider the whole speci�cation itself. This is done
by the pro�le �lter that compares two Larks speci�cations by using the TF-IDF (term frequency-inverse
document frequency)[16] technique in information retrieval area.

Each speci�cation in Larks is treated as a document, and a word w in a document Req is weighted
for that document in the following way. The number of times w occurs throughout all documents is
called the document frequency df(w) of w. The used collection of documents is not unlimited, such as
the advertisement database of the matchmaker.

Thus, for a given document d, the relevance of d based on a word w is proportional to the number
wf(w; d) of times the word w occurs in d and inverse proportional to df(w). A weight h(w; d) for a word
in a document d out of a set D of documents denotes the signi�cance of the classi�cation of w for d, and
is de�ned as follows:

h(w; d) = wf(w; d) � log( jDj
df(w) ).

The weighted keyword representation wkv(d; V ) of a document d contains for every word w in a given
dictionary V the weight h(w; d) as an element. Since most dictionaries provide a huge vocabulary we cut
down the dimension of the vector by using a �xed set of appropriate keywords determined by heuristics
and the set of keywords in Larks itself.

The similarity dps(Req;Ad) of a request Req and an advertisement Ad under consideration is then
calculated by :

dps(Req;Ad) =
Req � Ad
jReqj � jAdj

where Req �Ad denotes the inner product of the weighted keyword vectors. If the value dps(Req;Ad)
does exceed a given threshold � 2 R the matching process continues with the following steps.

3.2.3 Similarity Filter

The pro�le �lter has two drawbacks: First, it does not consider the structure of the description. That
means, e.g., the �lter is not able to di�erentiate among input and output declaration of a speci�cation.
Second, comparison of pro�le does not rely on any semantics of words in a document. Thus, the �lter is
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not able to recognize that, e.g., the word pair (Computer, Notebook) should have a closer distance than
the pair (Computer, Book).

The similarity �lter overcomes these drawbacks by comparing descriptions in terms of so-called simi-
larity distance between two descriptions in Larks. Computation of similarity distance is a combination
of distance values as calculated for pairs of input and output declarations, and input and output con-
straints. Each of these distance values in turn is computed in terms of the distance between concepts
and words which occur in the descriptions. The values are computed o�ine and stored in the respec-
tive databases of the matchmaker. Word distance is computed using the trigger-pair model [15]. If two
words are signi�cantly co-related, then they are considered as so-called trigger-pairs. The value of the
co-relation is domain speci�c. In the current implementation we use the Wall Street Journal corpus of
1M words to compute the word distance. The distance computation between concepts is discussed in
section 3.3.

3.2.4 Signature and Constraint Filters

The similarity�lter takes into consideration the semantics of individual words in the description. However,
it does not take the meaning of constraints in a Larks speci�cation into account. A more sophisticated
semantical matching is needed. This is done in our matchmaking process by the signature and constraint
�lters. Both �lters are designed to look for so-called semantical plug-in matches.

Signature matching checks if the signatures of input and output declarations match. It is performed
by a set of subtype inference rules as well as the concept subsumption testing (see [17] for details).

In software engineering it is proven that a component description Desc2 'plug-in matches' into another
description Desc1 if

� Their signatures matches.

� InConstraint of Desc1 implies the InConstraints of Desc2, i.e., for every clause C1 in the set of
input constraints of Spec1 there is a clause C2 in the set of input constraint of Spec2 such that
C1 �� C2.

� OutConstraints of Desct2 implies the OutConstraints of Desc1, i.e., for every clause C2 in the set
of output constraints of Spec2 there is a clause C1 in the set of output constraints of Spec1 such
that C2 �� C1.

where �� denotes the �-subsumption[12] relation between de�nite program clauses. This type of seman-
tical match is shown in �gure 2.

Main problem in performing the plug-in matching is that the logical implication between constraints
is not decidable for �rst order predicate logic, and even not for an arbitrary set of Horn clauses. To
make the matching process tractable and feasible, we decided to use the �-subsumption, a relation that
is weaker than logical implication.

3.3 Concept Subsumption Checking

Concept subsumption relation and concept distance are frequently used in the matching engine, especially
in the similarity �lter, the signature �lter, and the constraint �lter. These relations are computed o�ine
and stored in the Concept Database.

A concept C subsumes another concept C0 if the extension of C0 is a subset of that of C. This means,
that the logical constraints de�ned in the term of the concept C0 logically imply those of the more general
concept C.

Any concept language is decidable if it is for concept subsumption among two concepts de�ned in
that language. The concept language Itl we use is NP-complete decidable. We use an incomplete
inference algorithm for computing subsumption relations among concepts in Itl

2. For the mechanism
of subsumption computation we refer the reader to, e.g., [19].

2The well-known trade-o� between expressiveness and tractability of concept languages in practice is surrounded almost

by subsumption algorithms which are correct but incomplete.
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Figure 2: Plug-in match of descriptions: Desc2 plugs into Desc1.

3.4 Computation of Distances Among Concepts

For matchmaking the identi�cation of additional relations among concepts other than subsumption is
very useful because it leads to a deeper semantic understanding. Moreover, since the expressivity of the
concept language Itl is restrictive so that performance can be enhanced, we need some way to express
additional associations among concepts.

For this purpose we use a so-called weighted associative network (AN), that is a semantic network
with directed edges between concepts as nodes. Any edge denotes the kind of a binary relation among
two concepts and is labeled in addition with a numerical weight (interpreted as a fuzzy number). The
weight indicates the strength of belief in that relation, since its real world semantics may vary.

In our implementation we create an associative network by using the concept subsumption hierarchy
and additional associations set by the user. Distance among two concepts C;C0in an AN is computed as
the strength of the shortest path between C and C0 based on triangular norms (see [3] for details).

4 Example of Matchmaking Using Larks

Consider the following simple speci�cations 'IntegerSort' and 'GenericSort' as a request of sorting integer
numbers and an advertisement for some agent's capability of sorting real numbers and strings, respectively.
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Figure 3: An Example of Matchmaking using Larks.

IntegerSort

Context Sort

Types

Input xs: ListOf Integer;
Output ys: ListOf Integer;

InConstraints le(length(xs),100);
OutConstraints before(x,y,ys) < � ge(x,y);

in(x,ys) < � in(x,xs);
ConcDescriptions

GenericSort

Context Sorting

Types

Input xs: ListOf Real j String;
Output ys: ListOf Real j String;
InConstraints

OutConstraints before(x,y,ys) < � ge(x,y);
before(x,y,ys) < � preceeds(x,y);
in(x,ys) < � in(x,xs);

ConcDescriptions

Assume that the requester and provider agent sends the request IntegerSort and advertisment Gener-
icSort to the matchmaker, respectively. Figure 4 describes the overall matchmaking process for that
request.

1. Context Matching

Both words in the Context declaration parts are su�ciently similar. We have no referenced concepts to
check for terminologically equity. Thus, the matching process proceeds with the following two �ltering
stages.

2. Comparison of Pro�les

According to the result of TF-IDF method both speci�cations are su�ciently similar:

3. Similarity Matching

Using the current auxiliary database for word distance values similarity matching of constraints yields:
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le(length(xs),100)) null = 1.0
before(x,y,ys) < � ge(x,y) in(x,ys) < � in(x,xs) = 0.5729
in(x,ys) < � in(x,xs) before(x,y,ys) < � preceeds(x,y)) = 0.4375
before(x,y,ys)< � ge(x,y)) before(x,y,ys) < � preceeds(x,y)) = 0.28125

The similarity of both speci�cations is computed as:
Sim(IntegerSort;GenericSort) = 0:64.

4. Signature Matching

Consider the signatures t1= (ListOf Integer) and t2= (ListOf RealjString). Following the subtype in-
ference rules 9., 4. and 1. it holds that t1 �st t2, but not vice versa, thus fsm(D11; D21) = sub. Analogous
for fsm(D12;D22) = sub.

5. Constraint Matching

The advertisement GenericSort also plug-in matches semantically with the request IntegerSort, because
the set of input constraints of IntegerSort is �-subsumed by that of GenericSort, and the set of output con-
straints of GenericSort is �-subsumed by that of IntegerSort. Thus GenericSort plugs into IntegerSort.
Please note that this does not hold vice versa.

5 Related Works

Agent matchmaking has been actively studied since the inception of software agent research. The earlist
matchmaker we are aware of is the ABSI facilitator, which is based on the KQML speci�cation and uses
the KIF as the content language. The KIF expression is basically treated like the Horn clauses. The
matching between the advertisement and request expressed in KIF is the simple uni�cation with the
equality predicate. Matchmaking using Larks performs better than ABSI in both, the language and
the matching process. The plug-in matching in Larks uses the �-subsumption test, which select more
matches that are also semantically matches.

The SHADE and COINS[10] are matchmakers based on KQML. The content language of COINS
allowes for the free text and its matching algorithm utilizes the tf-idf. The contect language of SHADE
matchmaker consists of two parts, one is a subset of KIF, another is a structured logic representation
called MAX. MAX use logic frames to declaratively store the knowledge. SHADE uses a frame like
representation and the matcher use the prolog like uni�er.

A more recent service broker-based information system is InfoSleuth[6]. The content language sup-
ported by InfoSleuth is KIF and the deductive database language LDL++, which has a semantics similar
to Prolog. The constraints for both the user request and the resource data are speci�ed in terms of some
given central ontology. It is the use of this common vocabulary that enables the dynamic matching of
requests to the available resources. The advertisements specify agents' capabilities in terms of one or
more ontologies. The constraint matching is an intersection function between the user query and the
data resource constraints. If the conjunction of all the user constraints with all the resource constraints
is satis�able, then the resource contains data which are relevant to the user request.

A somewhat related research area is the research on information mediators among heterogenous
information systems[21, 1]. Each local information system is wrapped by a so-called wrapper agent and
their capabilities are described in two levels. One is what they can provide, usually described in the local
data model and local database schema. Another is what kind of queries they can answer; usually it is a
subset of the SQL language. The set of queries a service can accept is described using a grammar-like
notation. The matching between the query and the service is simple: it just decides whether the query
can be generated by this grammar. This area emphasizes the planning of database queries according to
heterogeneous information systems not providing complete SQL sevices. Those systems are not supposed
to be searched for among a vast number of resources on the Internet. The description of capabilities and
matching are not only studied in the agent community, but also in other related areas.

5.1 Works Related with Capability Description

The problem of capability and service descriptions can be tackled at least from the following di�erent
approaches:
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1. Software speci�cation techniques.
Agents are computer programs that have some speci�c characteristics. There are numerous work
for software speci�cations in formal methods, like model-oriented VDM and Z[13], or algebraic-
oriented Larch. Although these languages are good at describing computer programs in a precise
way, the speci�cation usually contains too much details to be of interests to other agents. Besides,
those existing languages are so complex that the semantic comparison between the speci�cations is
impossible. The reading and writing of these speci�cations also require substantial training.

2. Action representation formalisms.
Agent capability can be seen as the actions that the agents perform. There are a number of
action representation formalisms in AI planning like the classical one the STRIPS. The action
representation formalismare inadequate in our task in that they are propositional and not involving
data types.

3. Concept languages for knowledge representation.
There are various terminological knowledge representation languages. However, an ontology itself
does not describe any capability. On the other hand, it provides auxiliary concepts to assist the
speci�cation of agent capabilities.

4. Database query capability description.

The database query capability description technique in [21] is developed as an attempt to describe
the information sources on the Internet, such that an automated integration of information is
possible. In this approach the information source is modeled as a database with restricted quering
capabilities.

5.2 Works Related with Service Retrieval

There are three broad approaches to service retrieval. One is the information retrieval techniques to search
for relevant information based on text, another is the software component retrieval techniques[22][5][8]
to search for software components based on software speci�cations. The third one is to search for web
resources that are typically described as database models[11][21].

In the software component search techniques, [22] de�ned several notions of matches, including the
exact match and the plug-in match, and formally proved the relationship between those matches. [5]
proposed to use a sequence of �lters to search for software components, for the purpose to increase the
e�ciency of the search process. [8] computed the distance between similar speci�cations. All these work
are based on the algebraic speci�cation of computer programs. No concept description and concept
hierarchy are considered.

In Web resource search techniques, [11] proposed a method to look for better search engines that
may provide more relevant data for the user concerns, and rank those search engines according to their
relevance to user's query. They propose the directory of services to record descriptions of each information
server, called a server description. A user sends his query to the directory of services, which determins
and ranks the servers relevant to the user's request. Both the query and the server are described using
boolean expression. The search method is based on the similarity measure between the two boolean
expressions.

6 Conclusion

The Internet is an open system where heterogeneous agents can appear and disappear dynamically. As
the number of agents on the Internet increases, there is a need to de�ne middle agents to help agents
locate others that provide requested services. In prior research, we have identi�ed a variety of middle
agent types, their protocols and their performance characteristics. Matchmaking is the process that brings
requester and service provider agents together. A provider agent advertises its know-how, or capability to
a middle agent that stores the advertisements. An agent that desires a particular service sends a middle
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agent a service request that is subsequently matched with the middle agent's stored advertisements. The
middle agent communicates the results to the requester (the way this happens depends on the type of
middle agent involved). We have also de�ned protocols that allow more than one middle agent to maintain
consistency of their adevertisement databases. Since matchmaking is usually done dynamically and over
large networks, it must be e�cient. There is an obvious trade-o� between the quality and e�ciency of
service matchmaking on the Internet.

We have de�ned and implemented a language, called Larks, for agent advertisement and request and
a matchmaking process using Larks. Larks judiciously balances language expressivity and e�ciency in
matching. Larks performs both syntactic and semantic matching, and in addition allows the speci�cation
of concepts (local ontologies) via ITL, a concept language.

The matching process uses �ve �lters, namely context matching, comparison of pro�les, similarity
matching, signature matching and constraint matching. Di�erent degrees of partial matching can result
from utilizing di�erent combinations of these �lters. Selection of �lters to apply is under the control of
the user (or the requester agent).

Acknowledgement: We thank Davide Brugali, Somesh Jha and Anandeep Pannu for their helpful dis-
cussions in this project.
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Abstract

The Internet is not only providing data for users to browse, but also databases to query, and
software agents to run. Due to the exponential increase of deployed agents on the Internet, automating
the search and selection of relevant agents is essential for both users and collaboration among di�erent
software agents. This paper �rst describes the agent capability description language Larks. Then
we will discuss the matchmaking process using Larks and give a complete working scenario. The
paper concludes with comparing our language and the matchmaking process with related works.
We have implemented Larks and the associated powerful matchmaking process, and are currently
incorporating it within our RETSINA multi-agent infrastructure framework.

Keywords: Matchmaking, Agent collaboration and coordination

1 Introduction

Nowadays the Internet is not only providing data for users to browse, but also databases to query, and
software agents to run. Due to the exponential increase of deployed agents on the Internet, automating
the searching and selection of relevant agents is essential for both users and the agent society in several
ways. Firstly, novice users in the syberspace may have no idea where to �nd the service, what agents
are available for doing their job. Secondly, experienced users may not be aware of every change on the
Internet. Relevant agents may appear and disappear over time. Thirdly, as the number and sophistication
of agents on the Internet increase, there is an obvious need for a standardized, meaningful communication
among agents to enable them to perform collaborative task execution.

To facilitate the searching and interoperation among agent on the Internet, we proposed the RETSINA
multi-agent infrastructure framework[21]. In this framework, we distinguish two general agent categories,
service providers and service requester agents. Service providers provide some type of service, such as
�nding information, or performing some particular domain speci�c problem solving (e.g. number sorting).
Requester agents need provider agents to perform some service for them. Since the Internet is an open
environment, where information sources, communication links and agents themselves may appear and
disappear unpredictably, there is a need for some means to help requester agents �nd providers. Agents
that help locate others are called middle agents.

We have identi�ed di�erent types of middle agents in the Internet, such as matchmakers (yellow page
services), brokers, billboards, etc. [2], and experimentally evaluated di�erent protocols for interoperation
between providers, requesters and various types of middle agents. W e have also developed protocols for
distributed matchmaking [8]. The process of �nding an appropriate provider through a middle agent is
called matchmaking. It has the following general form (Figure 1):

� Provider agents advertise their capabilities such as know-how, expertise, and so on, to middle agents.

�This research has been sponsored in part by O�ce of Naval Research grant N-00014-96-16-1-1222.
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Figure 1: Matchmaking using Larks: An Overview

� Middle agents store these advertisements.

� A requester asks some middle agent whether it knows of providers with desired capabilities.

� The middle agent matches the request against the stored advertisements and returns the result.

While this process at �rst glance seems very simple, it is complicated by the fact that providers and
requesters are usually heterogeneous and incapable in general of understanding each other. This di�-
culty gives rise to the need for a common language for describing the capabilities and requests of software
agents in a convenient way. In addition, one has to devise a mechanism for matching descriptions in that
language. This mechanism can then be used by middle agents to e�ciently select relevant agents for
some given tasks.

In the following, we �rst describe the agent capability description language Larks. Then we will
discuss the matchmaking process using Larks and give a complete working scenario. The paper concludes
with comparing our language and the matchmaking process with related works. We have implemented
Larks and the associated powerful matchmaking process, and are currently incorporating it within our
RETSINA multi-agent infrastructure framework [21].

2 The Agent Capability Description Language Larks

2.1 Desiderata for an Agent Capability Description Language

There is an obvious need to describe agent capabilities in a common language before any advertisement,
request or even matchmaking among the agents can take place. In fact, the formal description of capabil-
ities is one of the di�cult problems in the area of software engineering and AI. Some of the main desired
features of such a agent capability description language (ACDL) are the following.

� Expressiveness. The language should be expressive enough to represent not only data and knowl-
edge, but also the meaning of program code. Agent capabilities should be described at an abstract
rather than implementation level. Most of existing agents should be able to be distinguished by
their descriptions in this language.
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� Inferences. Inferences on descriptions written in this language should be supported. Automated
reasoning and comparison on the descriptions should be possible and e�cient.

� Ease of Use. Descriptions should not only be easy to read and understand, but also easy to write
by the user. The language should support the use of domain or common ontologies for specifying
agents capabilities.

� Application in theWeb. One of the main application domains for the language is the speci�cation
of advertisements and requests of agents in the Web. The language allows for automated exchange
and processing of information among these agents.

There are many program description languages, Z[15], to describe the functionalities of programs.
These languages concern too much detail to be useful for the searching purpose. Also, reading and
writing speci�cations in these languages require sophisticated training. On the other hand, the interface
de�nition languages, like IDL[?], WIDL, go to the other extreme by omitting the functional descriptions
of the services at all. Only the input and output information are provided.

In AI, knowledge description languages like KIF[?] are meant to describe the knowledge instead of the
actions of a service. The action representation formalisms like STRIPS[?] are too restrictive to represent
complicated service. Some agent communication languages like KQML[5] and FIPA[?] concentrate on
the communication protocals (message types) between agents but leave the content part of the language
unspeci�ed.

In Internet computing, various description format are being proposed, notably the WIDL and the
Resource Description Framework(RDF)[16]. Although the RDF also aims at the interoperablity between
Web applications, it is rather intended to be a basis for describing metadata. RDF allowes di�erent
vendors to describe the properties and relations between resources on the Web. That enables other
programs, like Web robots, to easily extract relevant information, and to build a graph structure of
the resources available on the Web, without the need to give any speci�c information. However, the
description does not describe the functionalities of the Web services.

Since none of those languages satis�es our requirements, we propose an ACDL, called Larks (Language
for Advertisement and Request for Knowledge Sharing), that enables for advertising, requesting and
matching agent capabilities.

2.2 Speci�cation in Larks

A speci�cation in Larks is a frame with the following slot structure.

Context Context of speci�cation
Types Declaration of used variable types
Input Declaration of input variables
Output Declaration of output variables
InConstraints Constraints on input variables
OutConstraints Constraints on input and output variables
ConcDescriptions Ontological descriptions of used words

The frame slot types have the following meaning.

� Context The context of the speci�cation in the local domain of the agent.

� Types Optional de�nition of the data types used in the speci�cation.

� Input and Output Input/output variable declarations for the speci�cation. In addition to the usual
type declaration, there may have concept attachment. The concept itself is de�ned in the concept
description slot ConcDescriptions.

� InConstraints and OutConstraints Logical constraints on input/output variables that appear in
the input/output declaration part. The constraints are restricted to be Horn clauses.
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� ConcDesriptions Optional description of the meaning of words used in the speci�cation. The
description relies on concepts in a given local domain ontology. Attachement of a concept C to a
word w in any of the slots above is done in the form: w*C. That means that the concept C is the
ontological description of the word w. The concept C is included in the slot ConcDescription.

Every speci�cation in Larks can be interpreted as an advertisement as well as a request; this depends
on the purpose for which an agent sends a speci�cation to some matchmaker agent(s). Every Larks

speci�cation must be wrapped up in an appropriate KQML message by the sending agent indicating if
the message content is to be treated as a request or an advertisement.

2.3 Using Domain Knowledge in Larks

Larks o�ers the option to use application domain knowledge in any advertisement or request. This is
done by using a local ontology for describing the meaning of a word in a Larks speci�cation. Local
ontologies can be formally de�ned using concept languages such as Itl.

The main bene�t of that option is twofold: (1) the user can specify in more detail what he is request-
ing or advertising, and (2) the matchmaker agent is able to make automated inferences on such kind
of additional semantic descriptions while matching Larks speci�cations, thereby improving the overall
quality of matching.

Example 2.1: Finding informations on computers

Suppose that a provider agent such as, e.g., HotBot, Excite, advertises the capability to �nd informations
about any type of computers. The administrator of the agent may specify that capability in Larks as
follows.

FindComputerInfo

Context Computer*Computer;
Types InfoList = ListOf(model: Model*ComputerModel,

brand: Brand*Brand,
price: Price*Money, color: Color*Colors);

Input brands: SetOf Brand*Brand;
areas: SetOf State;
processor: SetOf CPU*CPU;
priceLow*LowPrice: Integer;
priceHigh*HighPrice: Integer;

Output Info: InfoList;
InConstraints

OutConstraints sorted(Info).

ConcDescriptions Computer = (and Product (exists has-processor CPU)
(all has-memory Memory) (all is-model ComputerModel));
LowPrice = (and Price (ge 1800)(exists in-currency aset(USD)));
HighPrice = (and Price (le 50000)(exists in-currency aset(USD)));
ComputerModel =
aset(HP-Vectra,PowerPC-G3,Thinkpad770,Satellite315);
CPU = aset(Pentium,K6,PentiumII,G3,Merced)
[Product, Colors, Brand, Money]

�

Most words in this speci�cation have been attached with a name of some concept out of a given on-
tology. The de�nitions of these concepts are included in the slot ConcDescriptions. Concept de�nitions
which were already sent to the matchmaker are enclosed in brackets. In this example we assume the
underlying ontology to be written in the concept language Itl[20].
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3 The Matchmaking Process Using Larks

3.1 Di�erent Types of Matching in Larks

Agent capability matching is the process of determining whether an advertisement registered in the
matchmaker matches a request. But when can we say two descriptions match against each other? Does
it mean that they have the same text? Or the occurrence of words in one discription su�ciently overlap
with those of another discription? When both descriptions are totally di�erent in text, is it still possible
for them to match? Even if they match in a given sense, what can we then say about the matched
advertisements? Before we go into the details of the matchmaking process, we should clarify the various
notions of matches of two speci�cations.

� Exact Match The most accurate match is when both descriptions are equivalent, either equal
literally, or equal by renaming the variables, or equal logically obtained by logical inference. This
type of matching is the most restrictive one.

� Plug-In Match A less accurate but more useful match is the so-called plug � in match. Roughly
speaking, plug-in matching means that the agent which capability description matches a given
request can be "plugged into the place" where that request was raised. As we can see, exact match
is a special case of plug-in match, i.e., wherever two descriptions are exact match, they are also
plug-in match.

A simple example of a plug-in match is that of the match between a request to sort a list of integers
and an advertisement of an agent that can sort both list of integers and list of strings. This example
is elaborated in section 4. Another example of plug-in match is between the request to �nd some
computer information without any constraint on the output list and the advertisement of an agent
that can provide these informations and sorts the respective output.

� Relaxed Match The least accurate but most useful match is the so-called relaxed match. Relaxed
match will not tell whether one description can be reused by another. Instead it determines how
close the two descriptions are by returning a numerical distance value. Two descriptions match if
the distance value is smaller than a preset threshold value. Normally the plug-in match and the
exact match will be a special case of the relaxed match if the threshold value is not too small.

An example of a relaxed match is that of the request to �nd the place (or address) where to buy
a Compaq Pentium-233 computer and the capability description of an agent that may provide the
price and contact phone number for that computer dealer.

Di�erent users in di�erent situation may want to have di�erent types of matches. Thus, we did provide
the matchmaker agent with several kinds of �lters.

3.2 The Filtering Stages of the Matchmaking Process

The matching engine of the matchmaker agent contains �ve di�erent �lters:

1. Context matching,

2. Pro�le comparison,

3. Similarity matching,

4. Signature matching, and

5. Constraint matching.

The �rst three �lters are meant for relaxed matching, and the signature and semantical matching �lter
are meant for plug-in matching. Please note, that the computational costs of these �lters are in increasing
order. Based on the given notions of matching we did implement four di�erent modes of matching for
the matchmaker:
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1. Complete Matching Mode. All �lters are considered.

2. Relaxed Matching Mode. The context, pro�le, and similarity matching is done.

3. Pro�le Matching Mode. Only the context matching and comparison of pro�les is performed.

4. Plug-In Matching Mode. In this mode, the matchmaker performs the signature and semantical
matching only.

Users may select any combinations of these �lters according their demand. For example, when e�-
ciency is the major concern, one may use only the context and pro�le �lter. On the other hand, when a
use or agent want to �nd some agents that can perform the task exactly she wants, then she must use the
signature and constraint �lters to �nd the plug-in matches. We will now describe each �lter in a more
detail.

3.2.1 Context Filter

It is obvious that any matching of two speci�cations has to be in an appropriate context. In Larks there
are two possibilities to deal with that. First, the Context slot in a speci�cation S contains a (list of)
words denoting the domain of discourse for matching S with any other speci�cation. When comparing two
speci�cations it is assumed that their domains, means their context, are the same (or atleast su�ciently
similar) as long as the real-valued distances between these words do not exceed a given threshold The
matching process only proceeds if that is true.

Second, every word in a Larks speci�cation may be associated with a concept in a given domain
ontology. Again, if the context of both speci�cations turned out to be su�ciently similar in the step
before then the concept de�nitions describe the meaning of the words they are attached to in a more
detail in the same domain. In this case, two concepts with same name but di�erent de�nitions will be
stored separately by extending each concept name by the identi�er of the agent who did send this concept.

To summarize, the context matching consists of two consecutive steps:

1. For every pair of words u; v given in the context slots compute the real-valued word distances
dw(u; v) 2[0,1]. Determine the most similar matches for any word u by selecting words v with the
minimum distance value dw(u; v). These distances must not exceed a given threshold.

2. For every pair of most similar matching words, check that the semantic distance among the attached
concepts does not exceed a given threshold.

3.2.2 Pro�le Filter

Although the context matching is e�cient, it does not consider the whole speci�cation itself. This is done
by the pro�le �lter that compares two Larks speci�cations by using the TF-IDF (term frequency-inverse
document frequency)[18] technique in information retrieval area.

Each speci�cation in Larks is treated as a document, and a word w in a document Req is weighted
for that document in the following way. The number of times w occurs throughout all documents is
called the document frequency df(w) of w. The used collection of documents is not unlimited, such as
the advertisement database of the matchmaker.

Thus, for a given document d, the relevance of d based on a word w is proportional to the number
wf(w; d) of times the word w occurs in d and inverse proportional to df(w). A weight h(w; d) for a word
in a document d out of a set D of documents denotes the signi�cance of the classi�cation of w for d, and
is de�ned as follows:

h(w; d) = wf(w; d) � log( jDj
df(w) ).

The weighted keyword representation wkv(d; V ) of a document d contains for every word w in a given
dictionary V the weight h(w; d) as an element. Since most dictionaries provide a huge vocabulary we cut
down the dimension of the vector by using a �xed set of appropriate keywords determined by heuristics
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and the set of keywords in Larks itself.

The similarity dps(Req;Ad) of a request Req and an advertisement Ad under consideration is then
calculated by :

dps(Req;Ad) =
Req � Ad
jReqj � jAdj

where Req �Ad denotes the inner product of the weighted keyword vectors. If the value dps(Req;Ad)
does exceed a given threshold � 2 R the matching process continues with the following steps.

3.2.3 Similarity Filter

The pro�le �lter has two drawbacks: First, it does not consider the structure of the description. That
means, e.g., the �lter is not able to di�erentiate among input and output declaration of a speci�cation.
Second, pro�le comparison does not rely on any semantics of words in a document. Thus, the �lter is
not able to recognize that the word pair (Computer, Notebook) should have a closer distance than the
pair (Computer, Book).

The similarity �lter overcomes these drawbacks by comparing descriptions in terms of so-called simi-
larity distance between two descriptions in Larks. Computation of similarity distance is a combination
of distance values as calculated for pairs of input and output declarations, and input and output con-
straints. Each of these distance values in turn is computed in terms of the distance between concepts
and words which occur in the descriptions. The values are computed o�ine and stored in the respec-
tive databases of the matchmaker. Word distance is computed using the trigger-pair model [17]. If two
words are signi�cantly co-related, then they are considered as so-called trigger-pairs. The value of the
co-relation is domain speci�c. In the current implementation we use the Wall Street Journal corpus of
1M words to compute the word distance. The distance computation between concepts is discussed in
section 3.3.

3.2.4 Signature and Constraint Filters

The similarity�lter takes into consideration the semantics of individual words in the description. However,
it does not take the meaning of given constraints into account.

The signature �lter and the constraint �lter are designed to look for the plug-in matches. In our
Larks representation, it is proven that a description Desc2 plug-in matches another description Desc1 if

� Their signatures matches.

� InConstraint of Desc1 implies the InConstraints of Desc2, i.e., for every clause C1 in the set of
input constraints of Spec1 there is a clause C2 in the set of input constraint of Spec2 such that
C1 �� C2.

� OutConstraints of Desct2 implies the OutConstraints of Desc1, i.e., for every clause C2 in the set
of output constraints of Spec2 there is a clause C1 in the set of output constraints of Spec1 such
that C2 �� C1.

where �� denotes the �-subsumption[13] relation between clauses. The plug-in semantical match can be
illustrated by the following �gure.

The signature matching is performed by a set of subtyping rules as well as the concept subsumption
testing. Main problem in performing the plug-in matching is that the logical implication between con-
straints is not decidable for �rst order predicate logic, and even not for an arbitrary set of Horn clauses.
To make the matching process tractable and feasible, we decided to use the �-subsumption, a relation
that is weaker than logical implication.
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3.3 Concept Subsumption Checking

Concept subsumption relation and concept distance are frequently used in the matching engine, especially
in the similarity �lter, the signature �lter, and the constraint �lter. These relations are computed o�ine
are stored in the Concept Database.

A concept C subsumes another concept C0 if the extension of C0 is a subset of that of C. This means,
that the logical constraints de�ned in the term of the concept C0 logically imply those of the more general
concept C.

Any concept language is decidable if it is for concept subsumption among two concepts de�ned in that
language. The concept language Itl we use is NP-complete decidable. The well-known trade-o� between
expressiveness and tractability of concept languages in practice is surrounded almost by subsumption
algorithms which are correct but incomplete. We use an incomplete inference algorithm for computing
subsumption relations among concepts in Itl. For the mechanism of subsumption computation we refer
the reader to, e.g., [19].

3.4 Computation of Distances Among Concepts

The concept subsumption gives only a generalization/specialization relation based on the de�nition of
the concepts via roles and attribute sets. In particular for matchmaking the identi�cation of additional
relations among concepts is very useful because it leads to a deeper semantic understanding. Moreover,
since the expressivity of the concept language Itl is restrictive so that performance can be enhanced, we
need some way to express additional associations among concepts.

For this purpose we use a so-called weighted associative network (AN), that is a semantic network
with directed edges between concepts as nodes. Any edge denotes the kind of a binary relation among
two concepts (generalization/specialization, and positive association), and is labeled in addition with a
numerical weight (interpreted as a fuzzy number). The weight indicates the strength of belief in that
relation, since its real world semantics may vary.

In our implementation we create an associative network by using the concept subsumption hierarchy
and associations set by the user. Distance among two concepts C;C0in an AN is computed as the strength
of the shortest path between C and C0 based on triangular norms (see [] for details).

8



AuxiliaryDB
(WordDistance,

 Type Hierarchy)

ConceptDB 
(Ontology)

 Context 
Matching

Syntactical 
 Matching

Semantical
 Matching

AdvertisementDB

Matchmaker Agent

          Ranked Set of Agents
      with capability to sort
    integer numbers

GenericSort

Requester Agent

IntegerSort

“Find agent that
can sort integer
numbers”

Figure 3: An Example of Matchmaking using Larks.

4 Example of Matchmaking Using Larks

Consider the following speci�cations 'IntegerSort' and 'GenericSort' as a request of sorting integer num-
bers and an advertisement for some agent's capability of sorting real numbers and strings, respectively.

IntegerSort

Context Sort
Types

Input xs: ListOf Integer;
Output ys: ListOf Integer;
InConstraints le(length(xs),100);
OutConstraints before(x,y,ys) < � ge(x,y);

in(x,ys) < � in(x,xs);
ConcDescriptions

GenericSort

Context Sorting
Types

Input xs: ListOf Real j String;

Output ys: ListOf Real j String;
InConstraints

OutConstraints before(x,y,ys) < � ge(x,y);
before(x,y,ys) < � preceeds(x,y);
in(x,ys) < � in(x,xs);

ConcDescriptions

Assume that the requester and provider agent sends the request IntegerSort and advertisment Gener-
icSort to the matchmaker, respectively. Figure 4 describes the overall matchmaking process for that
request.

1. Context Matching

Both words in the Context declaration parts are su�ciently similar. We have no referenced concepts
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to check for terminologically equity. Thus, the matching process proceeds with the following two
�ltering stages.

2. Comparison of Pro�les

According to the result of TF-IDF method both speci�cations are su�ciently similar:

3. Similarity Matching

Using the current auxiliary database for word distance values similarity matching of constraints
yields:

le(length(xs),100)) null = 1.0
before(x,y,ys) < � ge(x,y) in(x,ys) < � in(x,xs) = 0.5729
in(x,ys) < � in(x,xs) before(x,y,ys) < � preceeds(x,y)) = 0.4375
before(x,y,ys)< � ge(x,y)) before(x,y,ys) < � preceeds(x,y)) = 0.28125

The similarity of both speci�cations is computed as:
Sim(IntegerSort; GenericSort) = 0:64.

4. Signature Matching

Consider the signatures t1= (ListOf Integer) and t2= (ListOf RealjString). Following the sub-
type inference rules 9., 4. and 1. it holds that t1 �st t2, but not vice versa, thus fsm(D11; D21) =
sub. Analogous for fsm(D12; D22) = sub.

5. Constraint Matching

The advertisement GenericSort also plug-in matches semantically with the request IntegerSort,
because the set of input constraints of IntegerSort is �-subsumed by that of GenericSort, and the
set of output constraints of GenericSort is �-subsumed by that of IntegerSort. Thus GenericSort
plugs into IntegerSort. Please note that this does not hold vice versa.

5 Related Works

Agent matchmaking has been actively studied since the inception of software agent research. The earlist
matchmaker we are aware of is the ABSI facilitator, which is based on the KQML speci�cation and uses
the KIF as the content language. The KIF expression is basically treated like the Horn clauses. The
matching between the advertisement and request expressed in KIF is the simple uni�cation with the
equality predicate. Matchmaking using Larks performs better than ABSI in both, the language and
the matching process. The plug-in matching in Larks uses the �-subsumption test, which select more
matches that are also semantically matches.

The SHADE and COINS[11] are matchmakers based on KQML. The content language of COINS
allowes for the free text and its matching algorithm utilizes the tf-idf. The contect language of SHADE
matchmaker consists of two parts, one is a subset of KIF, another is a structured logic representation
called MAX. MAX use logic frames to declaratively store the knowledge. SHADE uses a frame like
representation and the matcher use the prolog like uni�er.

A more recent service broker-based information system is InfoSleuth[?, 7]. The content language
supported by InfoSleuth is KIF and the deductive database language LDL++, which has a semantics
similar to Prolog. The constraints for both the user request and the resource data are speci�ed in terms of
some given central ontology. It is the use of this common vocabulary that enables the dynamic matching
of requests to the available resources. The advertisements specify agents' capabilities in terms of one or
more ontologies. The constraint matching is an intersection function between the user query and the
data resource constraints. If the conjunction of all the user constraints with all the resource constraints
is satis�able, then the resource contains data which are relevant to the user request.

A somewhat related research area is the research on information mediators among heterogenous
information systems[22][1]. Each local information system is wrapped by a so-called wrapper agent and
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their capabilities are described in two levels. One is what they can provide, usually described in the local
data model and local database schema. Another is what kind of queries they can answer; usually it is a
subset of the SQL language. The set of queries a service can accept is described using a grammar-like
notation. The matching between the query and the service is simple: it just decides whether the query
can be generated by this grammar. This area emphasizes the planning of database queries according to
heterogeneous information systems not providing complete SQL sevices. Those systems are not supposed
to be searched for among a vast number of resources on the Internet. The description of capabilities and
matching are not only studied in the agent community, but also in other related areas.

5.1 Works Related with Capability Description

The problem of capability and service descriptions can be tackled at least from the following di�erent
approaches:

1. Software speci�cation techniques.
Agents are computer programs that have some speci�c characteristics. There are numerous work
for software speci�cations in formal methods, like model-oriented VDM and Z[15], or algebraic-
oriented Larch. Although these languages are good at describing computer programs in a precise
way, the speci�cation usually contains too much details to be of interests to other agents. Besides,
those existing languages are so complex that the semantic comparison between the speci�cations is
impossible. The reading and writing of these speci�cations also require substantial training.

2. Action representation formalisms.
Agent capability can be seen as the actions that the agents perform. There are a number of
action representation formalisms in AI planning like the classical one the STRIPS. The action
representation formalismare inadequate in our task in that they are propositional and not involving
data types.

3. Concept languages for knowledge representation.
There are various terminological knowledge representation languages. However, an ontology itself
does not describe any capability. On the other hand, it provides auxiliary concepts to assist the
speci�cation of agent capabilities.

Database query capability description.

The database query capability description technique is developed as an attempt to describe the infor-

mation sources on the Internet, such that an automated integration of information is possible. In

this approach the information source is modeled as a database with restricted quering capabilities.

5.2 Works Related with Service Retrieval

There are three broad approaches to service retrieval. One is the information retrieval techniques to search
for relevant information based on text, another is the software component retrieval techniques[24][6][9]
to search for software components based on software speci�cations. The third one is to search for web
resources that are typically described as database models[12][22].

In the software component search techniques, [24] de�ned several notions of matches, including the
exact match and the plug-in match, and formally proved the relationship between those matches. [6]
proposed to use a sequence of �lters to search for software components, for the purpose to increase the
e�ciency of the search process. [9] computed the distance between similar speci�cations. All these work
are based on the algebraic speci�cation of computer programs. No concept description and concept
hierarchy are considered.

In Web resource search techniques, [12] proposed a method to look for better search engines that
may provide more relevant data for the user concerns, and rank those search engines according to their
relevance to user's query. They propose the directory of services to record descriptions of each information
server, called a server description. A user sends his query to the directory of services, which determins
and ranks the servers relevant to the user's request. Both the query and the server are described using
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boolean expression. The search method is based on the similarity measure between the two boolean
expressions.

6 Conclusion

The Internet is an open system where heterogeneous agents can appear and disappear dynamically. As
the number of agents on the Internet increases, there is a need to de�ne middle agents to help agents
locate others that provide requested services. In prior research, we have identi�ed a variety of middle
agent types, their protocols and their performance characteristics. Matchmaking is the process that brings
requester and service provider agents together. A provider agent advertises its know-how, or capability to
a middle agent that stores the advertisements. An agent that desires a particular service sends a middle
agent a service request that is subsequently matched with the middle agent's stored advertisements. The
middle agent communicates the results to the requester (the way this happens depends on the type of
middle agent involved). We have also de�ned protocols that allow more than one middle agent to maintain
consistency of their adevertisement databases. Since matchmaking is usually done dynamically and over
large networks, it must be e�cient. There is an obvious trade-o� between the quality and e�ciency of
service matchmaking on the Internet.

We have de�ned and implemented a language, called Larks, for agent advertisement and request and
a matchmaking process using Larks. Larks judiciously balances language expressivity and e�ciency in
matching. Larks performs both syntactic and semantic matching, and in addition allows the speci�cation
of concepts (local ontologies) via ITL, a concept language.

The matching process uses �ve �lters, namely context matching, comparison of pro�les, similarity
matching, signature matching and constraint matching. Di�erent degrees of partial matching can result
from utilizing di�erent combinations of these �lters. Selection of �lters to apply is under the control of
the user (or the requester agent).

Acknowledgement: We thank Seth Wido� for invaluable help with the implementation.
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