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Abstract. Service matchmaking among heterogeneous software agents in the Internet is usually done
dynamically and must be efficient. There is an obvious trade-off between the quality and efficiency of
matchmaking on the Internet. We define a language called Larks for agent advertisements and requests,
and present a flexible and efficient matchmaking process that uses Larks. The Larks matchmaking
process performs both syntactic and semantic matching, and in addition allows the specification of con-
cepts (local ontologies) via ITL, a concept language. The matching process uses five different filters:
context matching, profile comparison, similarity matching, signature matching and constraint matching.
Different degrees of partial matching can result from utilizing different combinations of these filters. We
briefly report on our implementation of Larks and the matchmaking process in Java. Fielded applica-
tions of matchmaking using Larks in several application domains for systems of information agents are
ongoing efforts.
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1. Introduction

The amount of services and deployed software agents in the most famous offspring
of the Internet, the World Wide Web, is exponentially increasing. In addition, the
Internet is an open environment, where information sources, communication links
and agents themselves may appear and disappear unpredictably. Thus, an effective,
automated search and selection of relevant services or agents is essential for human
users and agents as well.
We distinguish three general agent categories in the Cyberspace, service providers,

service requester, and middle agents. Service providers provide some type of service,
such as finding information, or performing some particular domain specific problem
solving. Requester agents need provider agents to perform some service for them.
Agents that help locate others are called middle agents [6]. Matchmaking is the
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process of finding an appropriate provider for a requester through a middle agent,
and has the following general form: (1) Provider agents advertise their capabilities
to middle agents, (2) middle agents store these advertisements, (3) a requester asks
some middle agent whether it knows of providers with desired capabilities, and (4)
the middle agent matches the request against the stored advertisements and returns
the result, a subset of the stored advertisements.
While this process at first glance seems very simple, it is complicated by the fact

that not only local information sources but even providers and requesters in the
Cyberspace are usually heterogeneous and incapable of understanding each other.
This gives rise to the need for a common language for describing the capabilities
and requests of software agents in a convenient way. Besides, one has to devise an
efficient mechanism to determine a structural and semantic match of descriptions
in that language. This means in particular using methods for reconciling potentially
semantic heterogeneous informations [23]. There is an obvious trade-off between
the quality and efficiency of matchmaking on the Internet.
In the following, we briefly present the agent capability description language,

Larks, and then discuss the matchmaking process using Larks. The paper con-
cludes with a brief comparison with related works. We have implemented Larks
and the associated powerful matchmaking process, and are currently incorporating
it within our RETSINA multi-agent infrastructure framework [44].

2. Matchmaking among heterogeneous agents

In the process of matchmaking (see Figure 1) three different kinds of collaborating
agents involved are:

1. Provider agents provide their capabilities, e.g., information search services, retail
electronic commerce for special products, etc., to their users and other agents.
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Figure 1. Service brokering vs. matchmaking.
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2. Requester agents consume informations and services offered by provider agents
in the system. Requests for any provider agent capabilities have to be sent to a
matchmaker agent.

3. Matchmaker agents mediate among both, requesters and providers, for some
mutually beneficial cooperation. Each provider must first register himself with
a matchmaker. Provider agents advertise their capabilities (advertisements) by
sending some appropriate messages describing the kind of service they offer.
Every request a matchmaker receives will be matched with his actual set of
advertisements. If the match is successful the matchmaker returns a ranked set
of appropriate provider agents and the relevant advertisements to the requester.

In contrast to a broker agent, a matchmaker does not deal with the task of
contacting the relevant providers, transmitting the service request to the service
provider and communicating the results to the requester. This avoids data transmis-
sion bottlenecks, but it might increase the amount of interactions among agents.

2.1. Agent capability description language requirements

There is an obvious need to describe agent capabilities in a common language
before any advertisement, request or even matchmaking among the agents can take
place. In fact, the formal description of capabilities is one of the major problems
in the area of software engineering and AI. Some of the main desired features of
such a agent capability description language are the following.

• Expressiveness: The language is expressive enough to represent not only data and
knowledge, but also to describe the meaning of program code. Agent capabilities
are described at an abstract rather than implementation level.

• Inferences: Inferences on descriptions written in this language are supported. A
user can read any statement in the language, and software agents are able to
process, especially to compare any pair of statements automatically.

• Ease of Use: Every description should not only be easy to read and understand,
but also easy to write by the user. The language should support the use of domain
or common ontologies for specifying agents capabilities.

• Application in the Web: One of the main application domains for the language
is the specification of advertisements and requests of agents in the Web. The
language allows for automated exchange and processing of information among
these agents.

In addition, the matchmatching process on a given set of capability descriptions
and a request, both written in the chosen ACDL, should be efficient, accurate—not
only relying on keyword extraction and comparison—and fully automated.

3. The agent capability description language Larks

Representing capabilities is a difficult problem that has been one of the major
concerns in the areas of software engineering, AI, and more recently, in the area of
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Internet computing. There are many program description languages, like the Vienna
Development Method (VDM), VDM++ [29] or Z [35], to describe the program
functionality. These languages concern too detail-rich to be feasibly searched. Also,
reading and writing specifications in these languages require sophisticated training.
On the other hand, the interface definition languages, like WIDL [47], go to the
other extreme by omitting the functional descriptions of the services entirely. Only
the input and output signature information are provided.
In AI, knowledge description languages, like KL-ONE [3], or knowledge inter-

change formats such as KIF [22] are meant to describe the knowledge instead of
the actions of a service. The action representation formalisms like STRIPS are too
restrictive to represent complicated service. Some agent communication languages
like KQML [10] and FIPA ACL [11, 12] concentrate on specifying communication
performatives (message types) between agents but leave the content part of the
language unspecified.
In Internet computing, various description formats are being proposed, notably

the Web Interface Definition Language (WIDL) [47] and the Resource Description
Framework (RDF) [36]. Although the RDF also aims at the interoperablity between
Web applications, it is intended rather to be a basis for describing metadata. RDF
allows different vendors to describe the properties and relations between resources
on the Web. That enables other programs, like Searchbots, to automatically extract
relevant information, and to build a graph structure of the resources available on the
Web, without the need to give any specific information. However, the description
does not describe the functionalities of the services available in the Web.
Since no existing language satisfies our requirements, we propose an ACDL,

called Larks (Language for Advertisement and Request for Knowledge Sharing)
that enables advertising, requesting and matching agent capabilities.

3.1. Specification in Larks

A specification in Larks is a frame with the following slot structure.

Context Context of specification
Types Declaration of used variable types
Input Declaration of input variables
Output Declaration of output variables
InConstraints Constraints on input variables
OutConstraints Constraints on output variables
ConcDescriptions Ontological descriptions of used words
TextDescription Textual description of specification

The frame slot types have the following meaning.

• Context: The context of the specification in the local domain of the agent.
• Types: Optional definition of the data types used in the specification.
• Input and Output: Input/output variable declarations for the specification. In
addition to the usual type declarations, there may also be concept attachments
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to disambiguate types of the same name. The concepts themselves are defined in
the concept description slot ConcDescriptions.

• InConstraints and OutConstraints: Logical constraints on input/output
variables that appear in the input/output declaration part. The constraints are
described as Horn clauses.1

• ConcDesriptions: Optional description of the meaning of words used in the
specification. The description relies on concepts defined in a given local domain
ontology. Attachment of a concept C to a word w in any of the slots above is done
in the form: w*C. That means that the concept C is the ontological description
of the word w. The concept C is included in the slot ConcDescriptions.

• TextDescription: Optional text description of the meaning of the specification
as a request for or advertisement of agent capabilities. In addition, the meaning
of input and output declaration, type and context part of the specification may
be described by attaching textual comments.

In our current implementation we assume each local domain ontology to be
written in the concept language ITL (Information Terminological Language) [43].
Following section gives examples for how to attach concepts defined in this language
in a Larks specification, and also shows an example domain ontology in ITL. A
generic interface for using ontologies in Larks expressed in languages other than
ITL will be implemented in near future.
Every specification in Larks can be interpreted as an advertisement as well as

a request; this depends on the purpose for which an agent sends a specification to
some matchmaker agent(s). Every Larks specification must be wrapped up in an
appropriate KQML message by the sending agent indicating if the message content
is to be treated as a request or an advertisement.

3.2. Examples of specifications in Larks

The following two examples show how to describe in Larks the capability to sort
a given list of items, and return the sorted list. Example 3.1 is the specification of
the capability to sort a list of at most 100 integer numbers, whereas in Example 3.2
a more generic kind of sorting real numbers or strings is specified in Larks. Since
the ConcDescriptions slot is empty, i.e., there is no concept attachment in the
specification, the semantics of used words in it are assumed to be known to the
matchmaker. Examples of how to use concept attachments in a specification are
given in the next section.

Example 3.1 (Sorting integer numbers)

IntegerSort

Context Sort
Types
Input xs: ListOf Integer;
Output ys: ListOf Integer;
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InConstraints le(length(xs),100);
OutConstraints before(x,y,ys) < − ge(x,y);

in(x,ys) < − in(x,xs);
ConcDescriptions
TextDescription sort list of at most 100 integer numbers

Example 3.2 (Generic sort of real numbers or strings)

GenericSort

Context Sorting
Types
Input xs: ListOf Real � String;
Output ys: ListOf Real � String;
InConstraints
OutConstraints before(x,y,ys) < −ge(x,y);

before(x,y,ys) < −preceeds(x,y);
in(x,ys) < −in(x,xs);

ConcDescriptions
TextDescription sorting list of real numbers or strings

The next example is a specification of an agent’s capability to buy stocks from
particular companies, e.g., IBM, Apple or HP, at a stock market.

Example 3.3 (Selling stocks by a portfolio agent)

sellStock

Context Stock, StockMarket;
Types StockSymbols = �IBM, Apple, HP, SIEMENS, Daimler-Chrysler�,

Money = Real;
Input symbol: StockSymbols;

yourMoney: Money;
shares: Money;

Output yourStock: StockSymbols;
yourShares: Money;
yourChange: Money;

InConstraints yourMoney >= shares*currentPrice(symb);
OutConstraints yourChange = yourMoney− shares*currentPrice(symb);

yourShares = shares; yourStock = symbol;
ConcDescriptions
TextDescription buying stocks from IBM, Apple, HP, SIEMENS, or

Daimler-Chrysler at the stock market.

Given the name of the stock, the amount of money available for buying stocks
and the shares for one stock, the agent is able to order stocks at the stock market.
The constraints on the order are that the amount for buying stocks given by the
user covers the shares times the current price for one stock. After performing the
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order the agent will inform the user about the stock, the shares, and the gained
benefit.

3.3. Using domain knowledge in Larks

As mentioned before, Larks offers the option to use application domain knowledge
in any advertisement or request. This is done by using a local ontology for describing
the meaning of a word in a Larks specification. An example for such a domain
ontology is given in the next section.
Local ontologies can be formally defined using, for example, concept languages

such as ITL, BACK, LOOM, CLASSIC or KRIS, a full-fledged first order predicate
logic, such as the knowledge interchange format (KIF) [22], or even the unified
modeling language (UML) [13].
The main benefit of using domain knowledge in Larks specifications is twofold:

1. the user can specify in more detail what she/he is requesting or advertising, and
2. the matchmaker agent is able to make automated inferences on such kind of

additional, formally defined semantic descriptions while matching Larks speci-
fications, thereby improving the overall quality of matching.

As mentioned before, our current implementation of Larks assumes the domain
ontology to be written in the concept language ITL [43]. The research area on con-
cept languages (or description logics) in AI has its origins in the theoretical defi-
ciencies of semantic networks in the late 70’s. KL-ONE [3] was the first concept
language providing a well-founded semantics for a more natural language-based
description of knowledge. Since then different concept languages have been inten-
sively investigated; they are almost all decidable fragments of first-order predicate
logic. The following is a simple example for a request and an advertisement written
in Larks in the air combat mission domain.

Example 3.4 (A request and advertisement of agent capabilities). We applied the
matchmaking process using Larks in the application domain of air combat mis-
sions. As an example for specification consider the following request and adver-
tisement, ‘ReqAirMissions’ and ‘AWAC-AirMissions,’ respectively. The request is to
find an agent which is capable to give information on deployed air combat missions
launched in a given time interval. Some provider agent in this domain advertises his
capability to provide information about a special kind of (AWAC) air combat mis-
sions.

ReqAirMissions

Context Attack, Mission*AirMission
Types Date = (mm: Int, dd: Int, yy: Int),

DeployedMission =
ListOf(mType: String, mID:String�Int)

Input sd: Date, ed: Date
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Output missions: Mission
InConstraints sd <= ed.
OutConstraints deployed(mID), launchedAfter(mID,sd),

launchedBefore(mID,ed).
ConcDescriptions AirMission =

(and Mission (atleast 1 has-airplane)
(all has-airplane Airplane) (all has-MissionType
aset(AWAC,CAP,DCA,HVAA)))

TextDescription capable of providing information on
deployed air combat missions launched in a
given time interval

AWAC-AirMissions

Context Combat, Mission*AWAC-AirMission
Types Date = (mm: Int, dd: Int, yy: Int)

DeployedMission =
ListOf(mt: String, mid:String�Int,
mStart: Date, mEnd: Date)

Input start: Date, end: Date
Output missions: DeployedMission;
InConstraints start <= end.
OutConstraints deployed(mID), mt = AWAC,

launchedAfter(mid,mStart),
launchedBefore(mID,mEnd).

ConcDescriptions AWAC-AirMission =
(and AirMission (atleast 1 has-airplane)
(atmost 1 has-airplane) (all has-airplane
aset(E-2)))

TextDescription capable of providing information on
deployed AWAC air combat missions launched
in some given time interval

Suppose that a provider agent such as, for example, HotBot, Excite, or even a
meta-searchbot, like SavvySearch or MetaCrawler, advertises the capability to find
informations about any type of computers. The administrator of the agent may
specify that capability in Larks as follows.

Example 3.5 (Finding informations on computers)

FindComputerInfo

Context Computer*Computer;
Types InfoList = ListOf (model: Model*ComputerModel,

brand: Brand*Brand,
price: Price*Money, color: Color*Colors);
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Input brands: SetOf Brand*Brand;
areas: SetOf State;
processor: SetOf CPU*CPU;
priceLow*LowPrice: Integer;
priceHigh*HighPrice: Integer;

Output Info: InfoList;
InConstraints
OutConstraints sorted(Info).
ConcDescriptions Computer = (and Product (exists has-processor CPU)

(all has-memory Memory) (all is-model ComputerModel));
LowPrice = (and Price (ge 1800) (exists in-currency aset(USD)));
HighPrice = (and Price (le 50000) (exists in-currency aset(USD)));
ComputerModel =
aset(HP-Vectra,PowerPC-G3,Thinkpad770,Satellite315);
CPU = aset(Pentium,K6,PentiumII,G3,Merced)
[Product, Colors, Brand, Money]

Please note that provider and requester agents do not have to share the meaning
of any words used in Larks specifications. For example, suppose that the agents do
not share the meaning of the word ‘Computer’ listed as a keyword in the Context
slot of both, an advertisement and request, respectively. Without any concept attach-
ment the matchmaker agent matches both specifications to be in the same context
though they may refer to different domains of discourse.
Any knowledge on relations among concepts attached to a pair of words to

be compared when matching two specifications helps the matchmaker agent to
determine the semantic similarity between these words. All attached concepts in
a given specification are formally defined in a local domain ontology2 of provider
or requester agent.
When multiple domain ontologies exist the matchmaker agent has to cope with

the known ontological mismatch problem. If the agents share a common domain
ontology equal or different names of concepts possess the same or different seman-
tics, respectively. However, the more difficult case occurs when the agents do not
share the same domain ontology; this may occur, for example, when agent capabili-
ties were specified in the same application domain by different people. In this case,
equality of concept names does not necessarily mean the equality of their semantics
but has to be determined by the matchmaker agent using the concept definitions.3

For this purpose the matchmaker agent dynamically builds and maintains a par-
tially global terminology based on the received concept definitions. It is assumed
that the vocabulary of basic words used in the definition of concepts of this ter-
minology is dynamically shared by the providers and requesters. This provides a
minimal common basis for a well-founded canonical interpretation of any concept
in the ontology of the matchmaker.

3.3.1. Example for a domain ontology in the concept language ITL. Conceptual kno-
wledge about a given application domain, or even common-sense, may be defined
by a set of concepts and roles as terms in a given concept language. In the current
implementation of Larks we use the concept language ITL for this purpose. Each
term as a definition of some concept C is a conjunction of logical constraints which
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are necessary for any object to be an instance of C. The set of terminological
definitions forms a particular style of an ontology, the terminology. Any definition
of concepts in a terminology relies on

• a set of concepts and roles already defined in the terminology and/or
• a given basic vocabulary of words (primitive components) which are not defined in
the terminology, that is, their semantics are assumed to be known and consistently
used across boundaries.

The following terminology, is written in the concept language ITL and defines
concepts in the computer application domain. It may be used in Example 3.5 in the
former section.

Product = (and (all is-manufactured-by Brand) (atleast 1 is-manufactured-by)
(all has-price Price))

Computer = (and Product (exists has-processor CPU) (all has-memory Memory)
(all is-model ComputerModel))

Notebook = (and Computer (all has-price
(and (and (ge 1000) (le 2999)) (all in-currency aset(USD)))
(all has-weight (and kg (le 5)) (all is-manufactured-by Company))
(all is-model aset(Thinkpad380, Thinkpad770,Satellite315))))

Brand = (and Company (all is-located-in State))
State = (and (all part-of Country) aset(VA,PA,TX,OH,NY))
Company = aset(IBM,Toshiba,HP,Apple,DEC,Dell,Gateway)
Colors = aset(Blue,Green,Yellow,Red)
Money = (and Real (all in-currency aset(USD,DM,FF,Y,P)))
Price = Money
LowPrice = (and Price (le 1800) (exists in-currency aset(USD)))
HighPrice = (and Price (ge 5000) (exists in-currency aset(USD)))
ComputerModel = aset(HP-Vectra,PowerPC-G3,Thinkpad-380, Thinkpad-770,Satellite-315)
CPU = aset(Pentium,K6,PentiumII,G3,Merced)

Obviously, at some point the providers and requesters must share a certain basic
vocabulary to enable a meaningful comparison of used concepts. It is assumed that
the basic set of primitive words of the partially global terminology of the match-
maker is unique and shared with providers and requesters. The name of the used
local terminology or domain ontology is denoted in the KQML message which
wraps the LARKS specification.

3.3.2. Subsumption relationships among concepts. One of the main inferences on
ontologies written in concept languages is the computation of the subsumption rela-
tion among two concepts: A concept C subsumes another concept C ′ if the exten-
sion of C ′ is a subset of that of C. This means, that the logical constraints defined
in the term of the concept C ′ logically imply those of the more general concept C.
Any concept language is decidable if it is decidable for concept subsumption

between two concepts defined in that language. The concept language ITL, which we
use, is NP-complete decidable. We compromise expressiveness of the NP-complete
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decidable ITL for (polynomial) tractability in our subsumption algorithm, which is
correct but incomplete. For the mechanism of subsumption computation we refer
the reader to, for example, [24, 32, 41, 42].
The computation of subsumption relationships between all concepts in a ontology

yields a so-called concept hierarchy. Both the subsumption computation and the
concept hierarchy are used in the matchmaking process (see Section 4.1.2).
We assume that the subsumption relation between two concepts may be identified

with a real world semantic relation. Like in [39], we utilize an injective, domain-
independent mapping between primitive components that occur in the concept def-
initions on the basis of given synonym relations.4

The matchmaker computes the subsumption relations between the concepts
included in any advertisement he receives from registered provider agents. This
yields a (set of) subsumption hierarchies of available concepts from a variety of
local domain ontologies. An extension of the partial global ontology of the match-
maker with additional types of relations is presented in Section 4.1.4. Please note,
that this ontology is not necessarily the union of all local domain ontologies of
providers, and is dynamically built by the matchmaker while processing advertise-
ments from registered provider agents. Any user or agent, requester or provider,
may browse through the matchmaker’s ontology and use the included concepts for
describing the meaning of words in a specification of a request or advertisement in
Larks.5

4. The matchmaking process using Larks

As mentioned before, we differentiate between three different kinds of collaborating
information agents: provider, requester and matchmaker agents. Figure 2 shows an
overview of the matchmaking process using Larks.
The matchmaker agent processes a received request in the following main steps:

• Compare the request with all advertisements in the advertisement database.
• Determine the provider agents whose capabilities match best with the request.
Every pair of request and advertisement has to go through several different filters
during the matchmaking process.

• Inform the requesting agent by sending them the contact addresses and related
capability descriptions of the relevant provider agents.

For being able to perform a steady, just-in-time matchmaking process the infor-
mation model of the matchmaker agent is comprised of the following components.

1. Advertisement database (ADB). This database contains all advertisements written
in Larks the matchmaker receives from provider agents.

2. Partial global ontology. The ontology of the matchmaker consists of all ontological
descriptions of words in advertisements stored in the ADB. Such a description is
included in the slot ConcDescriptions and sent to the matchmaker with any
advertisement.
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Figure 2. Matchmaking using Larks: An overview.

3. Auxiliary database. The auxiliary data for the matchmaker comprises a database
for word pairs and word distances, basic type hierarchy, and internal data.

As mentioned before, the ontology of a matchmaker agent is not necessarily
equal to the union of local domain ontologies of all provider agents who are actually
registered at the matchmaker. This also holds for the advertisement database. Thus,
a matchmaker agent has only partial global knowledge on available information in
the overall multi-agent system; this partial knowledge might also be not up-to-date
concerning the actual time of processing incoming requests. This is due to the fact
that for efficiency reasons changes in the local ontology of a provider agent will
not be propagated immediately to all matchmaker agents he is registered at. In the
following we will describe the matchmaking process using Larks in more detail.

4.1. Filtering stages of the matchmaking process

Agent capability matching is the process of determining whether an advertisement
registered in the matchmaker matches a request. But when can we say two descrip-
tions match against each other? Does it mean that they have the same text? Or the
occurrence of words in one description sufficiently overlap with those of another
description? When both descriptions are totally different in text, is it still possi-
ble for them to match? Even if they match in a given sense, what can we then say
about the matched advertisements? Before we go into the details of the matchmak-
ing process, we should clarify the various types of matches of two specifications.
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4.1.1. Types of matching in LARKS

4.1.1.1. Exact match. Of course, the most accurate match is when both descrip-
tions are equivalent, either equal literally, or equal by renaming the variables, or
equal logically obtained by logical inference. This type of matching is the most
restrictive one.

4.1.1.2. Plug-in match. A less accurate but more useful match is the so-called
plug-in match. Roughly speaking, plug-in matching means that the agent whose
capability description matches a given request can be “plugged into the place” where
that request was raised. Any pair of request and advertisement can differ in the
signatures of their input/output declarations, the number of constraints, and the
constraints themselves. As we can see, exact match is a special case of plug-in
match, that is, wherever two descriptions are exact match, they are also plug-in
match.
A simple example of a plug-in match is that of the match between a request to

sort a list of integers and an advertisement of an agent that can sort both list of
integers and list of strings. This example is elaborated in Section 5. Another example
of plug-in match is between the request to find some computer information without
any constraint on the output and the advertisement of an agent that can provide
these informations and sorts the respective output.

4.1.1.3. Relaxed match. The least accurate but most useful match is the
so-called relaxed match. A relaxed match has a much weaker semantic interpre-
tation than a exact match and plug-in match. In fact, relaxed match will not tell
whether two descriptions semantically match or not. Instead it determines how
close the two descriptions are by returning just a numerical distance value. Two
descriptions match if the distance value is smaller than a preset threshold value.
Normally the plug-in match and the exact match will be a special case of the
relaxed match if the threshold value is not too small.
An example of a relaxed match is that of the request to find the place (or address)

where to buy a Compaq Pentium233 computer and the capability description of an
agent that may provide the price and contact phone number for that computer
dealer.
Different users in different situation may want to have different types of matches.

Although people usually may prefer to have plug-in matches, such a kind of match
does not exist in many cases. Thus, people may try to see the result of a relaxed
match first. If there is a sufficient number of relaxed matches returned a refined
search may be performed to locate plug-in matching advertisements. Even when
people are interested in a plug-in match for their requests only, the computational
costs for this type of matching might outweigh its benefits.

4.1.2. Different filters of matching in LARKS. For the matchmaking process we
adopt several different methods from the area of information retrieval, AI and
software engineering for computing syntactical and semantic similarity among
agent capability descriptions. These methods are particularly efficient in terms of
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performance as needed for dynamic matchmaking in the Internet. To summarize,
the matching process is designed with respect to the following criteria:

• The matching should not be based on keyword retrieval only. Instead, unlike the
usual free text search engines, the semantics of requests and advertisements
should be taken into consideration.

• The matching process should be automated. A vast amount of agents appear and
disappear in the Internet. It is nearly impossible for a user to manually search or
browse all agents capabilities.

• The matching process should be accurate. For example, if the matches returned by
the match engine are claimed to be exact match or plug-in match, those matches
should satisfy the definitions of exact matching and plug-in matching.

• The matching process should be efficient, that is, it should be fast.
• The matching process should be effective, that is, the set of matches should not be
too large. For the user, typing in a request and receiving hundreds of matches is
not necessarily very useful. Instead, we prefer a small set of highly rated matches
to a given request.

To fulfill the matching criteria listed above, the matching process is organized as
a series of five increasingly stringent filters on candidate agents:

1. Context matching
2. Profile comparison
3. Similarity matching
4. Signature matching
5. Constraint matching.

All filters are independent from each other; each of them narrows the set of
matching candidates with respect to a given filter criterion. The computational costs
of these filters are in increasing order. Users may select any combination of these
filters on demand. For example, when efficiency is the major concern, a user might
select only the context and profile filters (similar to most conventional SearchBots
in the Internet).
Context matching selects those advertisements in the ADB which can be com-

pared with the request in the same or similar context. This filter roughly prunes off
advertisements which are not relevant for a given request. The comparison of pro-
files, similarity and signature matching compare the request with any advertisement
selected by the context matching. The request and advertisement profile comparison
uses a weighted keyword representation for the specifications and a given term fre-
quency based similarity measure [38]. The last filter, constraint matching, focus on
the (input/output) constraints and declaration parts of the specifications. It checks
if the input/output constraints of any pair of request and advertisement logically
match (see Section 4.1.5).
Concerning the different types of matching there is the following relation to the

different filters used in our matchmaker. The first three filters are meant for relaxed
matching, and the signature and constraint matching filter are meant for plug-in
matching.
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4.1.3. Different matching modes of the matchmaker. Based on the given types and
filters of matching we did implement four different modes of matching for the
matchmaker:

1. Complete Matching Mode. In this mode all filters are considered for matching
requests and advertisements in Larks.

2. Relaxed Matching Mode. Only the context, profile and similarity filter are consid-
ered.

3. Profile Matching Mode. Only the context matching and comparison of profiles is
done.

4. Plug-In Matching Mode. In this mode, the matchmaker performs only the signa-
ture and constraint matching.

If the considered advertisement and request contain conceptual attachments, i.e.,
ontological descriptions of used words, then in most of the filters, except for the
comparison of profiles, we need a way to determine the semantic distance between
the defined concepts. For that we use the computation of subsumption relationships
and a weighted associative network.

4.1.4. Computation of semantic distances among concepts. We have presented the
notion of concept subsumption in Section 3.3.2. But the concept subsumption gives
only a generalization/specialization relation based on the definition of the concepts
via roles and attribute sets. In particular for matchmaking the identification of addi-
tional relations among concepts is very useful because it leads to a deeper seman-
tic understanding. Moreover, since the expressivity of the concept language ITL
is restrictive so that performance can be enhanced, we need some way to express
additional associations among concepts.
For this purpose we use a so-called weighted associative network, that is a

semantic network with directed edges between concepts as nodes. Any edge
denotes the kind of a binary relation among two concepts, and is labeled in addi-
tion with a numerical weight (interpreted as a fuzzy number). The weight indicates
the strength of belief in that relation, since its real world semantics may vary.6 We
assume that the semantic network consists of three kinds of binary, weighted rela-
tionships: (1) generalization, (2) specialization (as inverse of generalization), and
(3) positive association among concepts [7]. The positive association is the most
general relationship among concepts in the network indicating them as synonyms
in some context. Such a semantic network is called an associative network (AN).
In our implementation an AN is created by the matchmaker by using the com-

puted concept subsumption hierarchy and additional associations extracted from
the WordNet ontology [9]. We assume that the terminological subsumption relation
among two concepts in the partial global ontology of the matchmaker may be identi-
fied with a real world semantical relation among them. That means, all subsumption
relations are used for setting the generalization and specialization relations among
concepts in the corresponding AN. Positive association, generalization and special-
ization relations are transitive.
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Table 1. Kind of paths in an AN

g s p

g g p p
s p s p
p p p p

As mentioned above, every edge in the AN is labeled with a fuzzy weight. These
weights are set by the user or automatically by default. The distance between two
concepts in an AN is then computed as the strength of the shortest path among
them. For performance reasons the matchmaker does not deal with dynamically
resolving ambiguities due to potential genericity and polysemy in the AN (see, e.g.,
[8]). Combining the strength of each relation in a path is done by using the following
triangular norms for fuzzy set intersections [27]:

.1�/� 0	 = max�0� /+ 0− 1� n = −1

.2�/� 0	 = / · 0 n = 0

.3�/� 0	 = min�/� 0� n = �

Since we have three different kinds of relationships among two concepts in an
AN the kind and strength of a path among two arbitrary concepts in the network
is determined as shown in Tables 1 and 2. For a formal discussion of that issue we
refer to the work of [7, 8, 26].
For all 0 ≤ /� 0 ≤ 1 holds that .1�/� 0	 ≤ .2�/� 0	 ≤ .3�/� 0	. Each triangular

norm is monotonic, commutative and associative, and can be used as axiomatic
sceletons for fuzzy set intersection. We restrict ourselves to a pessimistic, neutral,
and optimistic t-norm .1� .2 and .3, respectively.
Since these triangular norms are not mutually associative the strength of a path

in an associative network depends on the direction of strength composition. This
asymmetry in turn might lead to unintuitive derived results: Consider, e.g., a path
consisting of just three relations among four concepts C1� C2� C3� C4 with C1 ⇒g� 0
6
C2 ⇒g� 0
8 C3 ⇒p� 0
9 C4. It holds that .2�.3�0
6� 0
8	� 0
9	 = 0
54, but the strength
of the same path in opposite direction is .2�.2�0
9� 0
8	� 0
6	 = 0
43. According to
Fankhauser and Neuhold [8] we can avoid this asymmetry by imposing a precedence
relation (3 > 2 > 1) for strength combination (see Table 3).
The computation of semantic distances among concepts is used in most of the

filters of the matching process. We will now describe each of the filters in detail.

Table 2. Strength of paths in an AN

g s p

g .3 .1 .2
s .1 .3 .2
p .2 .2 .2



lARKS 189

Table 3. Computational precedence for the strength
of a path

g s p

g 2 3 1
s 1 2 1
p 1 1 3

4.1.5. The filters of the matchmaking process

4.1.5.1. Context matching. Any matching of two specifications has to be in an
appropriate context. In Larks to deal with restricting the advertisement matching
space to those in the same domain as the request, each specification supplies a list
of keywords meant to describe the semantic domain of the service. When comparing
two specifications it is assumed that their context or domains are the same (or at
least sufficiently similar) as long as (1) the real-valued distances between the roots of
considered words do not exceed a given threshold, and (2) the distance between the
attached concepts of the pairs of most similar words does not exceed a threshold.
Word distance is computed using the trigger-pair model [37]. If two words are

significantly co-related, then they are considered trigger-pairs, and the value of the
co-relation is domain specific. In the current implementation we use the Wall Street
Journal corpus of one million word pairs to compute the word distance.
For example, both specifications ‘ReqAirMissions’ and ‘AWACS-AirMissions’ (see

Example 3.4) pass the context filter as to be in a sufficiently similar context. The
most similar word pairs are (Attack, Combat), (Mission, Mission), and the concept
AirMission subsumes the concept AWACS-AirMission.
To summarize, the context matching consists of two consecutive steps:

1. For every pair of words u� v given in the Context slots compute the real-valued
word distances dw�u� v	 ∈ 40� 15. Determine the most similar matches for any
word u by selecting words v with the minimum distance value dw�u� v	. These
distances must not exceed a given threshold.

2. For every pair of most similar matching words, check that the semantic distance
among the attached concepts does not exceed a given threshold.

4.1.5.2. Comparison of profiles. The comparison of two profiles relies on a stan-
dard technique from the Information Retrieval area, called term frequency-inverse
document frequency weighting (TF-IDF) (see [38]). According to that, any specifi-
cation in Larks is treated as a document.
Each word w in a document Req is weighted for that document in the following

way. The number of times w occurs throughout all documents is called the doc-
ument frequency df �w	 of w. The used collection of documents is not unlimited,
such as the advertisement database of the matchmaker.
Thus, for a given document d, the relevance of d based on a word w is pro-

portional to the number wf �w� d	 of times the word w occurs in d and inverse
proportional to df �w	. A weight h�w� d	 for a word in a document d out of a set D
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of documents denotes the significance of the classification of w for d, and is defined
as follows:

h�w� d	 = wf �w� d	 · log
( �D�
df �w	

)



The weighted keyword representation wkv�d�V 	 of a document d contains for
every word w in a given dictionary V the weight h�w� d	 as an element. Since most
dictionaries provide a huge vocabulary we cut down the dimension of the vector by
using a fixed set of appropriate keywords determined by heuristics and the set of
keywords in Larks itself.
The similarity dps�Req�Ad	 of a request Req and an advertisement Ad under

consideration is then calculated by:

dps�Req�Ad	 = Req ·Ad
�Req� · �Ad�

where Req ·Ad denotes the inner product of the weighted keyword vectors. If the
value dps�Req�Ad	 does exceed a given threshold 0 ∈ R both documents pass the
profile filter. For example, the profiles of both specifications in Example 3.4 are
similar with degree 0.65.
The matchmaker then checks if the declarations and constraints of both specifi-

cations for a request and advertisement are sufficiently similar. This is done by a
pairwise comparison of declarations and constraints in two steps:

1. Similarity matching and
2. Signature matching

4.1.5.3. Similarity matching. The profile filter has two limitations. It does not
consider the structure of the description. That means the filter, for example, is
not able to differentiate among input and output declarations of a specification.
Besides, profile comparison does not rely on the semantics of words themselves.
Thus the filter is not able to recognize that the word pair (Computer, Notebook),
for example, should have a closer distance than the pair (Computer, Book).
Computation of similarity relies on a combination of distance values as calculated

for pairs of input and output declarations, and input and output constraints. Each
of these distance values is computed in terms of the distance between concepts and
words that occur in their respective specification section. The values are computed
at the time of advertisement submittal and stored in the matchmaker database.
Let Ei�Ej be variable declarations or constraints, and S�E	 the set of words

in E. The similarity among two expressions Ei and Ej is determined by pairwise
computation of word distances as follows:

Sim�Ei� Ej	 = 1−
(( ∑

�u� v	∈S�Ei	×S�Ej 	
dw�u� v		

/
�S�Ei	× S�Ej	�

))
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The similarity value Sim�Sa� Sb	 among two specifications Sa and Sb in Larks is
computed as the average of the sum of similarity computations among all pairs of
declarations and constraints:

Sim�Sa� Sb	 =
∑

�Ei�Ej 	∈�D�Sa	×D�Sb		U�C�Sa	×C�Sb		
Sim�Ei� Ej	

/
��D�Sa	×D�Sb		U�C�Sa	× C�Sb		�

with D�S	 and C�S	 denoting the input/output declaration and input/output con-
straint part of a specification S in Larks, respectively. Both specifications in
Example 3.4 pass the similarity filter with a similarity value of 0.83.

4.1.5.4. Signature matching. The similarity filter takes into consideration the
semantics of individual words in the description. However, it does not take the
meaning of the logical constraints in a Larks specification into account. This is
done in our matchmaking process by the signature and constraint filters. The two
filters are designed to work together to look for a so-called semantic plug-in match
known in the software engineering area [16, 20, 50].
The signature filter first considers the declaration parts of the request and the

advertisement, and determines pairwise if their signatures of the (input or output)
variable types match following the type inference rules given below.

Definition 4.1 (Subtyping Inference Rules). Consider two types t1 and t2 as part of
an input or output variable declaration part (in the form Input v � t1; or Output
v � t2;) in a Larks specification.

1. Type t1 is a subtype of type t2 (denoted as t1 �st t2) if this can be deduced by
the following subtype inference rules.

2. Two types t1� t2 are equal (t1 =st t2) if t1 �st t2 and t2 �st t1 with
(a) t1 =st t2 if they are identical t1 = t2
(b) t1 � t2 =st t2 � t1 (commutative)
(c) �t1 � t2	 � t3 = t1 � �t2 � t3	 (associative)

Subtype Inference Rules:

(1) t1 �st t2 if t2 is a type variable

(2)
t1 =st t2
t1 �st t2

(3) t1� t2 are sets,
t1 ⊆ t2
t1 �st t2

(4) t1 �st t1 � t2
(5) t2 �st t1 � t2
(6)

t1 �st t2� s1 �st s2
�t1� s1	 �st �t2� s2	
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(7)
t1 �st t2� s1 �st s2
t1 � s1 �st t2 � s2

(8)
t1 �st t2

SetOf�t1	 �st SetOf�t2	

(9)
t1 �st t2

ListOf�t1	 �st ListOf�t2	

Matching of two signatures sig and sig′ is defined by a binary string-valued func-
tion fsm on signatures with

fsm�sig� sig′	 =


sub sig′ �st sig

Sub sig �st sig
′

eq sig =st sig
′

disj else

Having described both filters of the syntactical matching we now define the mean-
ing of syntactical matching of two specifications written in Larks.

Definition 4.2 (Syntactical matching of specifications in Larks). Consider two
specifications Sa and Sb in Larks with nk input declarations, mk output decla-
rations, and vk constraints nk�mk ∈ N� k ∈ �a� b�, two declarations Di, Dj , and
constraints Ci, Cj in these specifications, and V a given dictionary for the compu-
tation of weighted keyword vectors. Let 0� 9� : be real threshold values for profile
comparison and similarity matching.

• Declarations Di and Dj syntactically match if they are sufficiently similar:

Sim�Di�Dj	 ≥ 9 ∧ fsm�Di�Dj	 
= disj


• Constraints Ci and Cj syntactically match if they are sufficiently similar:

Sim�Ci� Cj	 ≥ 9


If both words in every pair �u� v	 ∈ S�Ei	 × S�Ej	 of most similar words are
associated with a concept C and C ′, respectively, then the distance among C and
C ′ in the so-called associative network of the matchmaker must not exceed a
given threshold value :.

The syntactical match of two declarations or constraints is denoted by a boolean
predicate Synt.

• The specifications Sa and Sb syntactically match if
1. their profiles match, that is, dps�Sa� Sb	 ≥ 0, and
2. for each declaration or constraint Ei, i ∈ �1� 
 
 
 na� in the declaration or con-

straint part of Sa there exists a most similar matching declaration or constraint
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Ej , j ∈ �1� 
 
 
 � nb� in the declaration or constraint part of Sb such that

Synt�Ei� Ej	 ∧ Sim�Ei� Ej	 = max�Sim�Ei� Ey	� y ∈ �1� 
 
 
 � nb��

(Analogous for each declaration or constraint in Sb.)
3. for each pair of declarations determined in (2.) the matching of their signatures

is of the same type, that is, for each �Di�Dj	 in (2.) it holds that the value
fsm�Di�Dj	 is the same, and

4. the similarity value Sim�Sa� Sb	 exceeds a given threshold.

4.1.5.5. Constraint matching. By using the syntactical filter many matches might
be found in a large agent society. Hence, it is important to use some kind of seman-
tic information (other than optionally attached concepts and the associative net-
work) to narrow the search, and to pin down more precise matches. This is done
by the constraint filter.
The most common and natural interpretation for a specification (even for a soft-

ware program) is using sets of pre- and post-conditions, denoted as PreS and PostS ,
respectively. In a simplified notation, any specification S can be represented by the
pair �PreS�PostS	.
A software component description D2 ‘semantically plug-in matches’ another

component description D1 if (1) their signatures match, (2) the set of input con-
straints of D1 logically implies that of D2, and (3) set of output constraints of
D2 logically implies that of D1. In our implmentation the logical implication
among constraints is computed using polynomial :-subsumption checking for Horn
clauses [31].

Definition 4.3 (Constraint-based semantic matching of two specifications). Con-
sider two specifications S�PreS�PostS	 and T �PreT �PostT 	.
The specification T semantically matches the specification S if

�PreS ⇒ PreT 	 ∧ �PostT ⇒ PostS	

That means, the set of pre-conditions of S logically implies that of T , and the set
of post-conditions of S is logically implied by that of T .

Plug-in matching of Larks specifications is valuable for selecting advertisements
which are not as constrained in the input parameters as the considered request, but
will return equal or greater number of more specific output parameters. For exam-
ple, the advertisement ‘AWAC-AirMission’ plugs into the request ‘ReqAirMissions’
in Example 3.4.
The problem in performing the semantical matching is that the logical implica-

tion is not decidable for first order predicate logic, and even not for an arbitrary
set of Horn clauses. To make the matching process tractable and feasible, we have
to decide on the expressiveness of the language used to represent the pre- and
post-conditions, and to choose a relation that is weaker than logical implication.
The :-subsumption relation [31] among two constraints C�C ′ (denoted as C �: C

′)
appears to be a suitable choice for semantical matching, because it is computation-
ally tractable and semantically sound.
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Plug-in Semantical Matching in LARKS

It is proven in the software engineering area that if the condition of semantical
matching in Definition 4.3 holds, and the signatures of both specifications match,
then T can be directly used in the place of S, that is, T plugs in S.

Definition 4.4 (Plug-in semantical matching of two specifications). Given two
specifications Spec1 and Spec2 in Larks then Spec2 plug-in matches Spec1 if

• The signatures of their variable declaration parts matches (Section 4.1.4.3).
• For every clause C1 in the set of input constraints of Spec1 there is a clause C2
in the set of input constraint of Spec2 such that C1 �: C2.

• For every clause C2 in the set of output constraints of Spec2 there is a clause C1
in the set of output constraints of Spec1 such that C2 �: C1.

where �: denotes the :-subsumption relation between constraints.

:-Subsumption between constraints. One suitable selection of the language and
the relation is the (definite program) clause and the so-called :-subsumption rela-
tion between clauses, respectively [31].7 In the following we will only consider Horn
clauses. A general form of Horn clause is a0 ∨ �¬a1	 ∨ · · · ∨ �¬an	, where each
ai� i ∈ �1� 
 
 
 � n� is an atom. This is equivalent to a0 ∨ ¬�a1 ∧ · · · ∧ an	, which in
turn is equivalent to �a1 ∧ · · · ∧ an	⇒ a0	.8 We adopt the standard notation for that
clause as a0 ← a1� 
 
 
 � an; in PROLOG the same clause is written as a0: a1� 
 
 
 � an.
Examples of definite program clauses are

• Date
year > 1995, sorted(computerInfo),
• before�x� y� ys	← ge�x� y	, and
• scheduleMeeting(group1, group2, interval, meetingDuration, meetTime) ← belongs×

(p1,group1), belongs(p2,group2), subset(meetTime, interval), length(meetTime) =
meetingDuration, available(p1,meetTime), available(p2,meetTime).

We say that a clause C :-subsumes another clause D (denoted as C �: D) if
there is a substitution : such that C: ⊆ D. C and D are :-equivalent if C �: D and
D preceq:C.
Examples of :-subsumption between clauses are

• P�a	← Q�a	 �: P�X	← Q�X	
• P�X	← Q�X	�R�X	 �: P�X	← Q�X	.

Since a single clause is not expressive enough, we need to use a set of clauses to
express the pre and post conditions (that is, the input and output constraints) of a
specification in Larks. A set of clauses is treated as a conjunction of those clauses.
Subsumption between two set of clauses is defined in terms of the subsumption

between single clauses. More specifically, let S and T be such sets of clauses. Then,
we define that S :-subsumes T if every clause in T is :-subsumed by a clause in S.
There is a complete algorithm to test the :-subsumption relation, which is in gen-

eral NP-complete but polynomial in certain cases. On the other hand, :-subsumption
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is a weaker relation than logical implication, that is, from C �: D we can only infer
that C logically implies D but not vice versa.9

5. Examples of matchmaking using Larks

Consider the specifications ‘IntegerSort’ and ‘GenericSort’ (see Examples 3.1 and
3.2) as a request of sorting integer numbers and an advertisement for some agent’s
capability of sorting real numbers and strings, respectively.

IntegerSort

Context Sort
Types
Input xs: ListOf Integer;
Output ys: ListOf Integer;
InConstraints le(length(xs),100);
OutConstraints before(x,y,ys) < − ge(x,y);

in(x,ys) < − in(x,xs);
ConcDescriptions
TextDescription sort of list of at most 100 integer numbers

GenericSort

Context Sorting
Types
Input xs: ListOf Real � String;
Output ys: ListOf Real � String;
InConstraints
OutConstraints before(x,y,ys) < − ge(x,y);

before(x,y,ys) < − preceeds(x,y);
in(x,ys) < − in(x,xs);

ConcDescriptions
TextDescription sorting a list of real numbers or strings

Assume that the requester and provider agent sends the request IntegerSort and
advertisment GenericSort to the matchmaker, respectively. Figure 3 describes the
overall matchmaking process for that request.

1. Context Matching. Both words in the Context declaration parts are sufficiently
similar. We have no referenced concepts to check for terminologically equity.
Thus, the matching process proceeds with the following two filtering stages.

2. Syntactical Matching.
(a) Comparison of Profiles. According to the result of TF-IDF method both spec-

ifications are sufficiently similar:
(b) Signature Matching. Consider the signatures t1 = (ListOf Integer) and

t2 = (ListOf Real�String). Following the subtype inference rules 9., 4.,
and 1. it holds that t1 �st t2, but not vice versa, thus fsm�D11�D21	 = sub.
Analogous for fsm�D12�D22	 = sub.
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Matching
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 Matching
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 Matching

AdvertisementDB

Matchmaker Agent

Ranked Set of Agents
with capability to sort

  integer numbers

GenericSort

Requester Agent

IntegerSort

“Find agent that
can sort integer
numbers”

Figure 3. An example of matchmaking using Larks.

(c) Similarity Matching. Using the current auxiliary database for word distance
values similarity matching of constraints yields:

le(length(xs),100) null = 1.0
before(x,y,ys) < −ge(x,y) in(x,ys) < −in(x,xs) = 0.5729
in(x,ys) < −in(x,xs) before(x,y,ys) < −preceeds(x,y)) = 0.4375
before(x,y,ys)< −ge(x,y)) before(x,y,ys) < −preceeds(x,y)) = 0.28125

The similarity of both specifications is computed as:

Sim�IntegerSort�GenericSort	 = 0
64


3. Constraint Matching. The advertisement GenericSort also plug-in matches
with the request IntegerSort, because the set of input constraints of
IntegerSort is :-subsumed by that of GenericSort, and the output con-
straints of GenericSort are :-subsumed by that of IntegerSort. Thus
GenericSort plugs into IntegerSort. Please note that this does not hold
vice versa.

6. Implementation

We did implement the language Larks and the matchmaking process using Larks
in Java. Figure 4 shows the user interface of the matchmaker agent.
To help visualize the matchmaking process, we devised a user interface that traces

the path of the advertisement result set for a request through the matchmaker’s fil-
ters. The filters can be configured by selecting the checkboxes beneath the desired
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Figure 4. The user interface of the matchmaker agent.

filters—disabled filters are darkened and bypassed. As the result set passes from one
filter to the next, the filter’s outline highlights, the number above the filter incre-
ments as it considers an advertisement, and the number above its output arrow
increments as advertisements successfully pass through the filter. Pushing the but-
tons above each inter-filter arrow reveals the result advertisement set for the pre-
ceding filter.

7. Related work

For dealing with semantic heterogeneity among distributed, autonomous informa-
tion sources there exist solutions in the multidatabase and information systems area
for years. Many of them are based on a database-style modeling of data, global
schema, and use of meta-information such as provided by a common ontology or
different domain ontologies for a content-based source selection [2, 14, 15, 39].
Others focus on information retrieval (IR) techniques for best-match queries, and
relevance assessment. Alternative solutions towards an adaptive process for reveal-
ing semantic interdependencies among heterogeneous data objects is proposed, for
example, by SCOPES [34].
However, the main problem of dynamic matchmaking in the Internet is to deal

with the trade-off between performance and quality of matching. Complex reasoning
has to be restricted to allow meaningful semantic matches of requests and advertise-
ments in a reasonable time. Unlike other approaches to matchmaking or brokering
in multi-agent systems [2, 28, 33], the presented matchmaking process using Larks
offers a flexible approach to satisfy both requirements. It does not deal with a global
integration of heterogeneous source descriptions in terms of database schemas, but
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with comparing descriptions of functional capabilities such as constrained actions to
provide services. For this purpose it combines techniques from IR, software engi-
neering and description logics area in an appropriate way to perform such filtering
efficiently. The matchmaker agent does not need to perform any complex query
activities such as, for example, by broker agents in InfoSleuth [33] or the mediator
agent in SIMS [2]. In addition, we have developed protocols for efficient, distributed
matchmaking among multiple matchmaker agents [19]. We now discuss some of the
related works in a more detail.

7.1. Work related to matchmaking and mediation

The earliest matchmaker we are aware of is the ABSI facilitator, which is based
on the KQML specification and uses the KIF as the content language. The KIF
expression is basically treated like the Horn clauses. The matching between the
advertisement and request expressed in KIF is the simple unification with the
equality predicate. Matchmaking using Larks performs better than ABSI in both,
the language and the matching process. The plug-in matching in Larks uses the
:-subsumption test, which select more matches that are also semantically matches.
The SHADE and COINS [28] are matchmakers based on KQML. The content

language of COINS allows for the free text and its matching algorithm utilizes the
tf-idf. The contect language of SHADE matchmaker consists of two parts, one is
a subset of KIF, another is a structured logic representation called MAX. MAX
uses logic frames to declaratively store the knowledge. SHADE uses a frame like
representation and the matcher uses the prolog like unifier.
A more recent service broker-based information system is InfoSleuth [18, 33].

The content language supported by InfoSleuth is KIF and the deductive database
language LDL++, which has a semantics similar to Prolog. The constraints for both
the user request and the resource data are specified in terms of some given cen-
tral ontology. It is the use of this common vocabulary that enables the dynamic
matching of requests to the available resources. The advertisements specify agents’
capabilities in terms of one or more ontologies. The constraint matching is an inter-
section function between the user query and the data resource constraints. If the
conjunction of all the user constraints with all the resource constraints is satisfiable,
then the resource contains data which are relevant to the user request.
Another related research area is that on mediators among heterogenous infor-

mation systems [1, 45]. Each local information system is wrapped by a so-called
wrapper agent and their capabilities are described in two levels. One is what they
can provide, usually described in the local data model and local database schema.
Another is what kind of queries they can answer; usually it is a subset of the SQL
language. The set of queries a service can accept is described using a grammar-like
notation. The matching between the query and the service is simple: it just decides
whether the query can be generated by this grammar. This area emphasizes the
planning of database queries according to heterogeneous information systems not
providing complete SQL sevices. Those systems are not supposed to be searched
for among a vast number of resources on the Internet. The description of capabil-
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ities and matching are not only studied in the agent community, but also in other
related areas.

7.2. Work related to capability description

The problem of capability and service descriptions can be tackled at least from the
following different approaches:

1. Software specification techniques. Agents are computer programs that have some
specific characteristics. There are numerous work for software specifications in
formal methods, like model-oriented VDM and Z [35], or algebraic-oriented
Larch. Although these languages are good at describing computer programs in
a precise way, the specification usually contains too much details to be of inter-
ests to other agents. Besides, those existing languages are so complex that the
semantic comparison between the specifications is impossible. The reading and
writing of these specifications also require substantial training.

2. Action representation formalisms. Agent capability can be seen as the actions that
the agents perform. There are a number of action representation formalisms
in AI planning like the classical one the STRIPS. The action representation
formalism are inadequate in our task in that they are propositional and not
involving data types.

3. Concept languages for knowledge representation. There are various terminological
knowledge representation languages. However, ontology itself does not describe
capabilities. On the other hand, it provides auxiliary concepts to assist the spec-
ification of the capabilities of agents.

4. Database query capability description. The database query capability description
technique is developed as an attempt to describe the information sources on
the Internet, such that an automated integration of information is possible. In
this approach the information source is modeled as a database with restricted
quering capabilities.

7.3. Work related to service retrieval

There are three broad approaches to service retrieval. One is the information
retrieval techniques to search for relevant information based on text, another is
the software component retrieval techniques [16, 20, 50] to search for software
components based on software specifications. The third one is to search for Web
resources that are typically described as database models [30, 45].
In the software component search techniques, Zaremski and Wing [50] defined

several notions of matches, including the exact match and the plug-in match,
and formally proved the relationship between those matches. Goguen et al. [16]
propsed to use a sequence of filters to search for software components, in order to
increase the efficiency of the search process. Jeng and Cheng [20] computed the dis-
tance between similar specifications. All of these works are based on the algebraic
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specification of computer programs. No concept description and concept hierarchy
are considered in their work.
In Web resource search techniques, Li and Danzig [30] proposed a method to look

for better search engines that may provide more relevant data for the user concerns,
and rank those search engines according to their relevance to user’s query. They
propose the directory of services to record descriptions of each information server,
called a server description. A user sends his query to the directory of services, which
determines and ranks the servers relevant to the user’s request. Both the query and
the server are described using boolean expression. The search method is based on
the similarity measure between the two boolean expressions.

8. Conclusion

The Internet is an open system where heterogeneous agents can appear and dis-
appear dynamically. As the number of agents on the Internet increases, there is a
need to define middle agents to help agents locate others that provide requested
services. In prior research, we have identified a variety of middle agent types, their
protocols and their performance characteristics. Matchmaking is the process that
brings requester and service provider agents together. A provider agent advertises
its know-how, or capability to a middle agent that stores the advertisements. An
agent that desires a particular service sends a middle agent a service request that
is subsequently matched with the middle agent’s stored advertisements. The middle
agent communicates the results to the requester (the way this happens depends on
the type of middle agent involved). We have also defined protocols that allow more
than one middle agent to maintain consistency of their advertisement databases.
Since matchmaking is usually done dynamically and over large networks, it must be
efficient. There is an obvious trade-off between the quality and efficiency of service
matching in the Internet.
We have defined and implemented a language, called Larks, for agent adver-

tisement and request and a matchmaking process using Larks. Larks judiciously
balances language expressivity and efficiency in matching. Larks performs both
syntactic and semantic matching, and in addition allows the specification of con-
cepts (local ontologies) via ITL, a concept language.
The matching process uses five filters, namely context matching, comparison of

profiles, similarity matching, signature matching and semantic matching. Different
degrees of partial matching can result from utilizing different combinations of these
filters. Selection of filters to apply is under the control of the user (or the requester
agent).
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Notes

1. In the future, we plan to allow for using ISO/IEC 13211-1 standard compliant Prolog programs to
describe constraints and functional capabilities.

2. For syntax and set-theoretical semantics of used concept language ITL we refer to [43].
3. For methods of determining subsumption or equality of concepts defined in an ontology using a

concept language such as ITL we refer to Section 3.3.2.
4. For a further discussion on possible loss of semantics due to mapping among multiple different

ontologies we refer to for example [40].
5. This is similar to the common use of domain namespaces in XML [49] for semantically tagging Web

page contents.
6. The relationships are fuzzy, and one cannot possibly associate all concepts with each other.
7. A clause is a finite set of literals, which is treated as the universally quantified disjunction of those

literals. A literal may be positive or negative. A positive literal is an atom, a negative literal is the
negation of an atom. A definite program clause is a clause with one positive literal and zero or more
negative literals. A definite goal is a clause without positive literals. A Horn clause is either a definite
program clause or a definite goal.

8. The literal a0 is called the head of the clause, and �a1 ∧ · · · ∧ an	 is called the body of the clause.
9. Please also note that the :-subsumption relation is similar to the query containment in database.

When advertisements are database queries, specification matching is reduced to the problem of
query containment testing.
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