
Interleaving Planning and Execution in a

Multiagent Team Planning Environment

Paolucci, M.1, Shehory, O.2 and Sycara, K.1

1. The Robotics Institute, Carnegie Mellon University

5000 Forbes Avenue, Pittsburgh, PA 15213

paolucci,katya@cs.cmu.edu

2. IBM Research Lab in Haifa, The Tel Aviv Site

2 Weizmann St., Tel Aviv, 61336 Israel

onn@il.ibm.com

February 5, 2000

Abstract

Agents in a multiagent system may need to share information and

services. For this, they need to be able to interleave deliberative planning

with execution of actions. The deliberative planning is needed to decide

which actions to perform to achieve an objective, whereas execution of

some of the actions is needed to make a more informed decision on the

other actions and to access services provided by other agents.

HITaP is a planner that interleaves planning and execution: using HI-

TaP an agent can, during planning, gather information by either direct

inspection of the domain or by �ring queries to other agents and record-

ing their answers. Interleaving planning and execution, as provided by

HITaP, plays a crucial role in an agent's ability to construct shared plans

with other agents and to manage the negotiation process that leads to

agreement with the agent's teammates on these plans.

HITaP is implemented and currently used as planning module for

agents in the RETSINA multiagent system. These agents cooperate to

solve problems in di�erent domains that range from portfolio management

to command and control decision support systems.1

1 Introduction

In a multiagent system, it is impractical to maintain the classical distinction
between planning and execution, in which an agent �rst constructs a plan and

1The authors thank Dirk Kalp and Anandeep Pannu for their contribution to the initial
implementation of the planner. In addition we are grateful to Josepth Giampapa for the
stimulating discussions on team behavior. This research has been sponsored in part by ONR
grant N-00014-96-16-1-1222 by DARPA grant F-30602-98-2-0138.
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at a later time executes all the actions in the plan. The �rst problem with this
schema is that multiagent systems are intrinsically dynamic: what an agent
assumes to be true, may become false as a consequence of the actions of the
other agents in the system. By following the rigid sequence between planning
and execution the agent runs the risk of constructing a plan that is not valid
because changes in the domain invalidate some preconditions.

An additional problem of the rigid sequence of planning and execution is
that because of the distribution of knowledge and capabilities among agents
in the system, one single agent cannot decide on the future course of action
without exchanging information with the other agents in the system. The agent
therefore should stop its planning, and query agents that can provide the needed
information. Furthermore, if the system is deployed in a real world application,
it may be the case that no agent has the necessary information, which can only
be gathered by direct inspection of the world.

Exchange of information is just an instance of a more general problem: the
agent may �nd out that, to achieve its goals, it needs the support of other
agents. The agent then either subcontracts a task to agents that can provide it,
or the agent forms an agent team and develops a joint plan with its teammates
to overcome the problem in a mutually supportive way [2, 7]. Independently of
whether the agent gathers information, subcontracts a task, or forms a team,
it needs to interrupt the planning and interleave the execution of actions in the
plan.

In this paper we present HITaP,2 a planner that interleaves planning and
execution within the general framework of HTN planning[3]. An agent develops
its own plan until it detects that it needs some information, or that it needs to
synchronize with other agents, at which point, the agent suspends planning and
executes selected actions in the plan. The executed actions lead the agent to
gather the needed information, or to complete the task that it could not perform
otherwise.

The paper is organized as follow: we �rst introduce the internal architecture
of RETSINA agents and the role of the planning component; then we present
the HITaP planner and the algorithm for interleaving planning and execution,
followed by two examples of application of the planner to problems of infor-
mation gathering and team coordination in which interleaving of planning and
execution plays an essential role. We conclude with di�erentiation from related
work and a summary of the contributions of this paper.

2 The RETSINA Architecture

RETSINA is an open multi-agent system that provides infrastructure for di�er-
ent types of deliberative, goal directed agents. In this sense, the architecture of
a RETSINA agent [17] exhibits some of the ideas of BDI agents [16, 12]. The
architecture of a RETSINA agent is displayed in �gure 1.

2Hierarchical Task network Planner
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Figure 1: The RETSINA agent internal architecture.

RETSINA agents are composed of four autonomous modules: a communi-
cator, a planner, a scheduler and an execution monitor. The communicator
module receives requests from users or other agents in KQML format [4] and
transforms these requests into goals. It also sends out requests and replies to
other agents.

Requests to the agent are transformed by the communicator into goals (re-
ferred to as objectives) for the planner. The agent's objectives are stored in its
ObjectiveDB, which is implemented as a priority queue. The objective with the
highest priority is selected by the planner, which constructs a plan that achieves
the goal. To construct its plans, the planner utilizes two data stores: the Task
Schema Library and the Task Reduction Library. The Task Schema Library
records the classes of tasks that can be accomplished by the agent. The Task
Reduction Library describes how complex tasks are achievable via a composition
of simpler tasks. In addition, the planner has access to the BeliefsDB, in which
the agent stores its domain knowledge, and changes beliefs about the world as
actions get executed or dynamic changes occur.

The plan constructed by the planner is stored in the TaskDB, which is an
interface between the planner and the scheduler: tasks are added by the planner
when they are ready to be executed, and they are removed by the scheduler that
decides when to execute them. The resulting schedule is used by the execution
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monitor that runs the actions and monitors their success and failure.
The four modules of a RETSINA agent are implemented as autonomous

threads of control to allow concurrent communication, planning and actions'
scheduling and execution. Furthermore, actions themselves are executed as
separate threads and can run concurrently. In general, concurrency between
actions is not virtual. Rather, since some actions are requests of services to
other agents running on remote hosts, actual parallelism is enabled.

3 The Planner Module

HITaP is used as a planning module of RETSINA agents; HITaP represents
tasks using the Hierarchical Task Network (HTN) formalism [3]. Figure 2 dis-
plays an example of an HTN. It consists of nodes that represent tasks and two
types of edges. The �rst type of edges are Reduction links|they describe the
decomposition of a high-level task to subtasks (a tree structure). These edges
are used to select the tasks that belong to the decomposition of the parent task.
The second type of edges are Provision/outcome links|they are used for value
propagation between task-nodes. Provision/outcome links describe how the re-
sult of one task is propagated to other tasks. For instance in Figure 3, the task
T represents the act of buying a product. T may decompose to �nding the price
(T1) and performing the transaction (T2). The reduction requires that T1 is
executed �rst to propagate the price outcome to T2.

Formally, a planning problem for HITaP is described by the tuple< A; C;R;B;O; T >,
where A is a set of actions (primitive tasks) that the agent can perform directly,
C is a set of complex tasks that are implemented by the composition of actions
and other complex tasks. R is a set of reduction schemas, where each reduc-
tion schema provides details on how complex tasks are reduced into simpler
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Figure 3: An example of task decomposition

tasks which eventually are reduced into actions that the agent can perform. In
addition, reduction schemas specify how tasks in the reduction are related to
each other through achievement of e�ects and precondition satisfaction. Since
a compex task can be reduced in multiple ways, there may be several reduction
schemas in R for the same task in C. B is the BeliefsDb, it contains the set of
beliefs of the agent. B is not a static list|it changes depending on the results
of the actions of the agent and the information gathered from the environment
or other agents. O is the ObjectiveDB, which holds objectives not yet achieved
by the agent. The goal of the planner is to achieve all the objectives in this
list. T is the TaskDB which, by holding the tasks already added to the plan,
describes the plan constructed by the agent.

3.1 Task Representation

A task is represented formally by a tuple < N ;Par;Dpar;Pro;Out; C; E > where
N is the name of the task; Par, Dpar and Pro are sets of input conditions whose
value a�ects the behavior of the task. Par and Dpar , called parameters and
dynamic parameters, refer to the beliefs of the agent; Pro is a set of provisions,
provision are used to describe the ow of control within the plan. Out is the set of
outcomes of the task. Finally, C is a set of constraints that describe under which
conditions the task can be successfully executed, and E is a set of estimators
used by the planner to predict the outcomes of the task. An example of a task is
shown in Figure 4. In this example,N= fBuy Productg, Par =fCash Expensesg,
Pro = fEnableg, Out =fPurchaseDoneg, C=fCash > ProductPriceg, and E
=fCash=Cash-ProductPriceg.

Parameters and dynamic parameters refer to the beliefs of the agent; both
parameters and dynamic parameters are stored in the BeliefsDB as part of the
domain knowledge of the agent. Parameters refer to beliefs on the state of the
environment while Dynamic Parameters refer to beliefs on facts in the domain
that are modi�ed by the agent executing the plan. For example, in a plan
which involves moving vehicles, origin and destination are parameters, while the
location of the vehicles and the amount of fuel are dynamic parameters since
they are modi�ed by the tasks in the plan. The distinction between parameters

5



Buy Product

PurchaseDoneExpenses
Cash

Enable

C: Cash>ProductPrice
E: Cash=Cash-ProductPrice

Figure 4: The Buy Product task has a provision and a parameter (on the left),
an outcome (on the right), and an estimator and a constraint (denoted E and
C, at the bottom).

and dynamic parameters is motivated by the timing in which they are known to
the agent: parameters are known at planning time, while dynamic parameters
are known only at execution time since they are instantiated by the execution
of the tasks in the plan.

Parameters and dynamic parameters are used as input to estimators and con-
straints. Estimators predict the e�ects of running a task, whereas constraints
are used to verify that some necessary conditions for running an action are met.
For instance, in the vehicle relocation example above (Figure 5), estimators
are used to �nd out how much fuel is needed to move from the origin to the
destination, while a constraint is used to verify that, in fact, the vehicle con-
trolled by the agent has enough fuel to complete the trip. Provisions do not
carry information about the domain, rather they store control ow information.
Provisions are used by the agent to enable an action to run, or to propagate
the success or failure of a task in the plan. Provisions and dynamic parame-
ters work combined with outcomes: when an action is executed, its outcomes
are established, and their values are transmitted through provision links to the
provisions or dynamic parameters of other tasks in the plan, establishing the
execution conditions of the latter tasks.

Figure 5, shows an example of how outcomes, provisions, parameters and
dynamic parameters work together. The task Select Path has three outcomes:
Completion, Path and Fail. The outcomesCompletion and Path are set when the
execution of the action is successful, in such a case the provision Enabled inAsk
Fuel Consumption is set, while the value of Path is propagated to the dynamic
parameter Path in Compute Fuel Consumption. Instead, when the task
Select Path fails, the outcomeFail is set, in such a case Send Sorry Message

is enabled, while Compute Fuel Consumption is not. The same holds for
the outcomes of Compute Fuel Consumption: if the action succeeds, the
outcomes Completion and Consumption are set and their values are propagated
to the Move task. When Compute Fuel Consumption fails, the outcome
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Figure 5: An example of a task reduction schema

Fail is established and Send Sorry Message is enabled.
The distinction between provisions and parameters allows a natural repre-

sentation of contingencies in the plan [14]. At planning time the agent can
predict possible outcomes of its own actions and construct a di�erent thread
of execution for each one of them. For example: the agent could have a plan
to go to a store to by some products. Since the store might not have what
the agent needs, then the agent can add to the plan a rule that says that if it
cannot �nd the products in the �rst store, then it should check also in another
store. Contingencies are represented in HITaP by generating di�erent ows of
control in the plan. For instance, in the example above, the agent predicts that
one of the actions in the plan might fail, and therefore it prepares for such a
contingency by planning to send a noti�cation of failure (Send Sorry Message)
to the requesting agent.

3.2 Task Reduction Schemas

Task reduction schemas are used to describe the implementation of complex
tasks by compositions of other tasks. The tuple < Ntask; Tlist; Ilinks;Plinks;Olinks >

formally represents a reduction schema. Ntask is the name of the reduced task t;
Tlist is a set of primitive and complex tasks that de�ne a method to implement
t. Ilinks contains inheritance links that connect t's provisions to the provisions
of the children tasks in Tlist. These links specify how the values of the provisions
of the parent task t become values of the provisions of its children tasks (the
members of Tlist). Plinks speci�es provision links between sibling tasks in the
decomposition. These links are used to maintain a temporal order between tasks
in the reduction. Olinks is the set of outcome propagation links that connect
the outcomes of the children tasks in Tlist to the outcomes of the parent task.
These links specify the e�ect of outcomes of the children tasks on the outcomes
of their parent task t.

An example of task reduction is displayed in �gure 5. There, Ntask is the
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name of the task Re-Locate Tlist is the list of task Select Path, Com-

pute Fuel Consumption and Move. Ilinks are the links that propagate
from Re-Locate to the subtasks; Plinks are the links that connect the sub-
tasks; Olinks are the links that propagate from the subtasks back to Com-

pute Fuel Consumption.

3.3 The Planning Process

The planning algorithm is described in Figure 6. It starts from an initial set of
plans (init-plans) that provide alternative hypotheses of solutions of the original
goal. Initial plans are constructed by matching tasks to the initial objectives.
The planner proceeds by selecting a partial plan P and an objective o from
P's ObjectiveDB, to generate a new partial plan for each possible solution of
o. This process is repeated until the planner generates a plan with an empty
ObjectiveDB. The planner fails if the list of partial plans empties before a
solution plan is found.

HITaP (goal)
init-plans  make initial plans.

partial-plans  init-plan.

While partial-plans is not empty do:

choose a partial plan P from partial-plans

If (P has no objectives)
then return P

else do:

remove an objective o from P's ObjectiveDB.

partial-plans  refinements of o in P

return failure

Figure 6: The Basic HITaP Planning Algorithm

The resulting plan is a tree of partially ordered tasks in which the leaf nodes
are actions, while the internal nodes are complex tasks. At execution time,
actions are scheduled for execution and eventually they are mapped to methods
which in turn are executed by the agent's execution monitor. Complex tasks
are used by the scheduler to synchronize the execution of primitive tasks as well
as for the propagation of the outcomes of computed tasks to tasks that were
not yet executed.

3.4 Establishment of Objectives

The algorithm to solve objectives is shown in Figure 7. The RETSINA Planner
allows three di�erent types of objectives: task-reduction objectives, suspension
objectives, and execution objectives. Task-reduction objectives are associated
with unreduced complex tasks in the TaskDB. They are used to signal which
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refinements of o in P

if o is a reduction objective then

t  the task corresponding to o

evaluate estimators and constraints of t

for each reduction r of t do

new-plans  apply r to P

if o is a suspension objective then

leave o in the ObjectiveDB of P

while waiting for an unsuspending event

new-plans add P

if o is an execution objective then

a  the action corresponding to o

if a completed successfully

new-plans add P

if a failed

new-plans  nil

if a still running

leave o to the ObjectiveDB of P

new-plans add P

Return new-plans

Figure 7: The Re�nement Algorithm

tasks in the current partial plan should be reduced. Once a reduction objective
is selected, the planner applies all task reduction schemas associated with the
task, generating a new partial plan in correspondence to each application of a
schema. As a result, all the subtasks listed in the reduction schema are added to
the partial-plan's TaskDB. Task reduction triggers the evaluation of constraints
and estimators that are associated with the task being reduced, which in turn
could trigger the execution of actions that inspect the environment and provide
information that is not present in the BeliefsDB.

Execution objectives are used to monitor the execution of actions while plan-
ning. An execution objective is created and added to the ObjectiveDB O when-
ever an action is executed. Execution objectives are removed from O only when
the corresponding action terminates. Their solution depends on the termina-
tion of the action: if the action terminates successfully, then the objective is
simply removed from the list of objectives and no action is taken; otherwise,
when the execution fails or times out, the partial plan also fails and the planner
backtracks.

Suspension objectives are used to signal that the partial plan contains unre-
duced complex tasks whose solution depends on data that is not currently avail-
able to the agent. Suspension objectives are delayed and transformed into re-
duction objectives only after the occurrence of an unsuspending event, such as
the successful completion of the execution of an action. Unsuspending events
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provide the data that the planner was waiting for, and they allow the completion
of the reduction of the complex task.

4 Execution of Actions while Planning

The evaluation of estimators and constraints should be computed before the
plan is completed. However when an estimator needs the value of a dynamic
parameter � that is not yet set, the agent can either use its own sensors to �nd
this information or query other agents for the missing information. In either
case, the completion of the plan is deferred until the value of � is provided.

The execution of information actions during planning is controlled by the
suspension algorithm (Figure 8). Since estimators and constraints are evaluated
in the task reduction step, the planner records that the reduction of a task t
is suspended by adding a new task-reduction objective o for t, marked as sus-
pended. The objective o records that t is not reduced yet and the completion of
the plan is deferred. Then, the planner looks for a primitive task t� in the plan,
that if executed would set �. t� is found by tracking backward inheritance links
and provision links that end in �. The task t� is then scheduled for execution
and a new execution objective e is added to the list of plan P's objectives. The
objective e is used to monitor the outcome of t�

suspension of t in P

o  task-reduction objective for t

add o to the ObjectiveDB of P

set o as suspended

set unsuspension trigger to a dynamic parameter �

Find task t� that sets �

Schedule t� for execution

e  execution objective for t�
add e to the ObjectiveDB of P

Figure 8: The Suspension Algorithm

As described above, the objectives o and e are not removed from the list of
objectives until t� completes its execution. The successful completion of t� sets
the dynamic parameter � which removes the suspension on o, which in turns
allows t's estimators and constraints to be evaluated and t to be reduced.

The use of suspension and monitoring objectives to control action execution
has important consequences. First and foremost, it closely ties action execution
and planning because a plan is not completed until all objectives are resolved.
The use of suspension and execution objectives guarantees that all scheduled
actions are successfully executed before the plan is considered a solution of the
problem. In addition, if an executing action fails, the failure will be detected as
soon as the planner re�nes the corresponding execution objective. Furthermore,

10



ComputeFuelConsumption

Goal position

Move

Initial position

C: Fuel>0
E: Fuel=Fuel-Consumption

Consumption

Path

Consumption
position

At Path end
PathPath

Goal position

Initial position

Re-locateFuel

position

Select Path

At goal

Figure 9: An example of a task reduction schema

using objectives to suspend and monitor action execution allows the planner to
work on other parts of the plan while it waits for the completion of information
gathering actions.

5 Planning while Gathering Information

The initial motivation for the HITaP was the need to gather information while
planning, because, since we do not make the closed world assumption, the agent
would have not been able to make an intelligent decision on which plan to adopt.
In this section we show an example of how the machinery explained above al-
lows the agent to gather the needed information. The example is taken from
an application of the planner to a command and control problem in which the
RETSINA multiagent system [17] is used to support the decision making of
three commanders of tank platoons.3 In this scenario, three army comman-
ders discuss a rendezvous location for their platoons. Then, each commander
constructs its own plan, assisted by a missionAgent that �nds a route for the
commander's platoon, taking into account fuel limitations, terrain features and
weather conditions.

Each commander asks its missionAgent to �nd a route to the rendezvous
point. MissionAgents transform the request to an objective that is achieved
using the reduction schema shown in Figure 9. Following the reduction schema4,
the plan adopted is Select Path,Compute Fuel Consumption, andMove.
Since the three actions can be further reduced, the planner adds three reduction
objectives to the ObjectiveDB.

Following the algorithm shown in Figure 7, reduction objectives trigger the
evaluation of the estimators associated with the task being reduced. The estima-
tor associated withMove depends on the value of the unknown dynamic param-

3For more information on the system see http://www.cs.cmu.edu/~softagents/muri.html
4The schema in �gure 9 is a simpli�ed version of the schema used in �gure 5
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eter Consumption that can be set only by executingCompute Fuel Consumption.
The execution of a step while planning is controlled by the suspension al-
gorithm described in Figure 8. The planner �rst suspends the reduction of
Move until the dynamic parameter Consumption is set; then it schedules Com-

pute Fuel Consumption for execution. SinceCompute Fuel Consumption

needs the value of Path, Select Path is also scheduled for execution.
The missionAgent executes �rst the task Select Path using its own path

planning capabilities, and it propagates the value of Path for the task Com-

pute Fuel Consumption. Then the missionAgent executes Compute Fuel Consumption

by sending a request for information to an agent that is specialized in estimat-
ing fuel consumption. From the point of view of the missionAgent, there is no
di�erence between the two tasks: a request to another agent is an action as any
other. As a result of performing the task Compute Fuel Consumption the
value of Consumption is estimated and propagated toMove. Finally the agent
can compute its estimator of the taskMove and verify whether there is enough
fuel to reach the goal.

To assess the performance of our interleaving planning and execution algo-
rithm, we tested the planner in two conditions: informed and uninformed. In
the uninformed condition the agent was not provided with su�cient information
to complete the plan, hence it had to gather information by running appropri-
ate actions during planning. In the informed condition, the agent was provided
with all the information needed to construct its plan, hence it did not need to
execute actions for acquiring information during planning. To prevent irrele-
vant external inuence on our measurements, we slightly modi�ed actions that
require access to resources external to the agent. In particular, actions that
require network access or assistance from other agents may induce non-local
delays. We simpli�ed such actions to avoid actual requests to other agents,
replacing these by simulated requests, thus maintaining the same plan struc-
ture, yet avoiding the external delays. In both conditions we implemented the
same problem. The plan the agent constructed to solve the problem included
16 tasks, of which 10 are actions. In the uninformed case, the agent executes 8
actions (for �nding missing information) while planning. In the informed case
the agent runs no actions during planning.

In both conditions we measured the total time needed by the agent to con-
struct the plan and the user's waiting time, from the time of tasking the agent
to the time of receiving results. The results reported in table 1 are an average
over 10 runs of the planner on the same input.

Uninformed Condition Informed Condition

Planning Time Waiting Time Planning Time Waiting Time
4.65 sec 5.76 sec 0.959 sec 2.656 sec

Table 1: Planning time in the two conditions
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Not surprisingly, the results in table 1 shows that interleaving planning and
execution slows down the planning process. This is expected, since the planner
in the uninformed condition performs all the work done in the informed condi-
tion, yet in addition it handles tasks' suspension and execution of actions that
acquire information.

The execution of an action is the result of many operations that include the
scheduling of the action, the actual time that the action requires to run its own
code, the time needed by Java to allocate and start a new thread of execution
for the action, and the time required to propagate the results of the action.
To evaluate the e�ect of these operations on the total time, we measured three
factors: the time consumed by the planner to suspend actions, the time spent
waiting for the result of the action, and the time needed for the action to run.
The results reported in table 2 are an average over 10 runs of the planner on
the same input.

Suspension Scheduling and Execution Action Execution Time
0.140sec 3.412 sec 0.467 sec

Table 2: Uninformed Condition: itemized computing time

The results shows that the cost of �nding which action to suspend is very
low, while the real cost of executing actions lays in the recurrent scheduling
and monitoring execution. This time includes action execution, which in our
case is very low since we used simpli�ed actions for the experiment, but, it is
potentially unbound.

The results of the experiment suggest that while the time needed to �nd
which action to suspend is very low and therefore the algorithms presented in
this paper can be e�ciently implemented, the agent's operations are slowed
down by the recurrent need to schedule actions and monitor their execution. In
general, the more actions are scheduled (and the more complicated these actions
are) the longer it will take to produce an answer. Nevertheless, this delay is
traded with a very important gain in the functionalities of the agent.

6 Planning a Team Activity

The commanders in the example described in the previous section managed the
coordination directly, while the planning agents were used only to �nd a route
to the rendezvous point. In a second experiment, we applied the HITaP to the
planning of a joint activity of the three army commanders in their command
and control exercise. The objective of the commanders is again to move their
platoons from their initial location to a �nal destination through a territory in
which enemymovements have been reported. When likely to encounter enemies,
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the commanders need to support each other to present a uni�ed front to the
enemies and minimize their losses.

The planning agents support the commanders by negotiating the role of each
platoon, i.e. whether a given platoon will cover the left, or the right side or it
will go in the middle ready to assist the other platoons when they are in trouble.
In addition the agents decide which route each platoon will follow, and how to
monitor each other's progress so that e�ective assistance can be given in case
of attack.

Theories of on joint activity [2, 8] stress the importance of the development
of joint intentions among the teammates. Joint intentions are used to create a
shared plan that satisfy the overall goals of the team, and to guide each agent
in the planning of its own activity within the team. Nevertheless, these theories
do not explain how joint intentions are created in the �rst place, nor do they
describe the process that brings these joint intentions about.

We structured the team activity into four phases: �rst the agents decide
which role each of them will play in the overall team activity; second, they
will decide which route to follow; third, they will decide how to monitor each
other's progress so as to maintain coordination during execution and �nally the
agents will execute following the route planned while monitoring each other's
progress. To for joint intentions, the agents need to negotiate until they reach an
agreement. The agents �rst negotiate which role to take in the overall activity
(left,center or right); then they negotiate the routes that they are going to follow,
and whether they are going to support each other; and �nally, they negotiate
how to monitor their progress toward the achievement of the goal.

The results of each phase of the joint activity is used to make a decision
in the following phases. For example, if an agent decides that its platoon will
take to the right, then it has to plan for a route in that area, it cannot move
on the center or on the left without changing its commitment. Similarly, the
decision on the route a�ects the position of the checkpoints used by the agent
while moving. Because of this strict interconnection between the di�erent parts
of the activity, each agent needs to construct a uni�ed plan which incorporates
all four phases. Such a plan would automatically record the rationale of the
decisions taken, so that the agent does not lose track of the reason behind the
choices it made, and if a problem arises the agent could �nd an alternative plan
or backtrack onto previous choices to construct a di�erent plan.

The agents follow a prescribed negotiation protocol while planning their own
activity that is displayed in Figure 10.

Following the negotiation protocol, to reach an agreement, the agents �rst
make a decision on the matter, then propose their decision to their teammates,
wait for the teammates proposals, and verify whether any agreement has been
reached. If there is no agreement, the agents proceed with another round of
negotiation. The problem of this protocol is that in order to decide whether to
continue the negotiation, the agent needs to have executed the previous three
steps, because it cannot decide whether there is agreement without hearing from
the teammates, and it cannot hear without proposing, this in turn cannot be
done without making a decision on what to propose. This process continues
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Negotiation Protocol

Make a decision
Propose the decision to the teammates
Wait for the teammates proposals
Any agreement is reached?
If yes, then output the decision made
If no, then follow another round of negotiation

Figure 10: The negotiation protocol used to achieve mutual agreement

Proposals

More NegotiationDecide

Decision

Team Propose

ProposalsEnable

Propose

Decision Success

Decision

Final
Decision

Final
Decision

Negotiate

Figure 11: Task reduction schema that implement the negotiation protocol

until an agreement is reached or all the alternatives have been explored.
The negotiation process shown in Figure 10 is the mechanism that allows all

the agents in the team to achieve mutual agreement on the joint activity that
they perform. As seen above, this negotiation process makes a crucial use of the
interleaving of planning and execution. The agent uses deliberative planning to
make the most informed decision on the plan to follow, but then it has to execute
actions in the plan to communicate with the teammates and decide whether any
agreement has been reached. Any agent that does not interleave planning and
execution could neither propose to the teammates its own decisions, nor record
the decisions of the teammates, nor detect when agreement has been reached
and move on to other phases of the joint activity.

The negotiation protocol above has been implemented in HITaP. Figure 11
shows the task reduction structure used to manage the negotiation protocol. The
�rst three tasks correspond to the three initial steps of the negotiation protocol,
while the fourth step is used to decide whether to continue the negotiation or
not.

The task structures for the task MoreNegotiation are displayed in Figure
12. When there is agreement between the teammates, the �rst decomposition
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Figure 12: Task reduction schema to decide whether to stop the negotiation

is used, whereas in the case of no agreement the second decomposition is used.
The constraints in the actions in the decomposition trigger the execution of the
tasks.

7 Related Work

HITaP has some similarities with Knoblock's Sage [9], mainly in the concur-
rency of planning and information gathering and the close connection between
the planner and the execution monitor through monitoring objectives. Never-
theless, the two planners di�er in many important respects: while Sage is a
partial order planner that extends UCPOP [13], HITaP plans by task reduction
rather than from �rst principles; in addition, HITaP extends Sage's functionali-
ties through the constant monitoring of the information gathered and replanning
when needed. Other planners relax STRIPS' omniscience assumption by inter-
leaving planning and execution of information gathering actions, e.g., XII[6].
Our approach is di�erent from theirs. First, as in the case of Sage, we use
a di�erent planning paradigm: HTN instead of SNLP. In addition we cannot
assume the Local Close World Assumption because the information gathered
might change while planning.

ConGolog [1] extends the expressivity of HTN planning to constructs like
loops and if-structures and sequences while dealing with incomplete knowledge.
HITaP achieves the same expressivity with a pure HTN approach: loops [19] are
planned for and used to implementmonitoring actions. The negotiation protocol
in �gure 10 shows how loops can be constructed with the help of interleaving
of planning and execution. The agent there follows a tail recursive procedure
that simulates a four steps loop: decide, propose and wait, until an agreement
is reached. HITaP implements if-structures' through provision satisfaction as
shown above in the discussion about contingencies.

HITaP bears also some `similarities to PRS [5]. Both planners decompose
abstract tasks into primitive actions. Yet, they follow di�erent planning algo-
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rithms: PRS is a reactive planner, while HITaP executes selected actions while
still planning. For this reason the two planners strike a di�erent balance be-
tween execution and deliberation. The negotiation task proves to be challenging
for reactive planners. During negotiation, the agent needs to deliberate on what
is the best proposal to make to its teammates. This deliberation requires the
analysis of di�erent proposals and the forecast of the consequences of a decision.
Such forecast is di�cult, if not impossible, for reactive planners [10]. For in-
stance, when choosing which role to use, a deliberative planner can analyze the
di�erent alternatives, but a reactive agent would commit to the �rst alternative,
without analyzing any of the others.

In conclusion, neither deliberative nor reactive planners can handle negotia-
tion properly. Deliberative planners cannot break the neat sequence of planning
and execution, hence they are unable to plan a negotiation process. Reactive
planners su�er from the complementary problem, namely, they cannot be un-
committed while investigating di�erent hypotheses. HITaP strikes a balance
between reaction and deliberation: it deliberates as necessary when decision
making is required, but it behaves as a reactive planner when it follows a pre-
cise protocol to communicate with its teammates.

The HITaP is a �rst step towards a distributed planning scheme based on
a peer to peer cooperation between agents that is not based on hierarchy or
control relationships. We call this type of cooperation capability-based. In this
respect, our approach is very di�erent from the planning architecture proposed
in [18], where the planning process is centralized, but the execution distributed.

The resulting collaborative process is consistent with the theoretical frame-
work layed out by Grosz et al [8] and Cohen et al [2], which concentrates on the
commitment of the agent to the team activity as a means to achieving the team
goal. In this respect, the private intentions of the agent depend on its intention
to achieve the team goal and on the agent's commitment to play its own role
in the overall team activity. The HITaP planner provides a way to implement
these ideas while tackling problems that are not faced in the theoretical works:
namely how is the agreement achieved and how the intentions are formed in the
�rst place.

Other implementation work on cooperation bears some similarities with the
work presented here. The STEAM system [11] and TOPI [15] are implemented
systems in which agents cooperate to achieve a common goal. Agents in both
STEAM and TOPI are handed a role and a plan to follow, and they execute the
plan in a collaborative way. The research performed with HITaP attempts to
overcome these limitations by leaving to the agents the construction of a shared
and distributed team plan in which the agents decide which roles to �ll and
which plans to follow.

8 Conclusion

Planners that deliberate but do not allow execution while planning are not of
much use for agents in multiagent systems because they do not allow exible
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interaction with other agents or with the domain while the agent plans locally.
The lack of this interaction prevents the agents from gathering important infor-
mation that is essential to the construction of the plan. Reactive planners su�er
from the counter problem: they do not allow the agent to deliberate enough on
its own decisions which may lead to gross suboptimality and conict in the
interaction with other agents.

HITaP strikes a balance between deliberative only planners and reactive
planners. HITaP deliberates on the actions to take until it realizes that it needs
to gather information or to contact other agents in the system; at which point,
HITaP executes selected actions in the plan to acquire the needed information
and interact with other agents. This interleaving of planning and execution
allows agents that implement HITaP to collaborate as teammates in the con-
struction of shared and distributed plans.
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