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1 Introduction

Due to the exponential increase of o�ered services in the most famous o�spring
of the Internet, the World Wide Web, searching and selecting relevant services is
essential for users. Various search engines and software agents providing various
di�erent services are already deployed on the Web. However, novice users of
the Web may have no idea where to start their search, where to �nd what they
really want, and what agents are available for doing their job. Even experienced
users may not be aware of every change in the Web, e.g., relevant web pages
might not exist or their content be valid anymore, and agents may appear and
disappear over time. The user is simply overtaxed by manually searching in the
Web for information or appropriate agents.

On the other hand, as the number and sophistication of agents on the Web
that may have been developed by di�erent designers increases, there is an obvi-
ous need for a standardized, meaningful communication among agents to enable
them to perform collaborative task execution. We distinguish two general agent
categories, service providers and service requester agents. Service providers
provide some type of service, such as �nding information, or performing some
particular domain speci�c problem solving (e.g. number sorting). Requester
agents need provider agents to perform some service for them. Since the In-
ternet is an open environment, where information sources, communication links
and agents themselves may appear and disappear unpredictably, there is a need
for some means to help requester agents �nd providers. Agents that help locate
others are called middle agents.

We have identi�ed di�erent types of middle agents in the Internet, such
as matchmakers (yellow page services), brokers, billboards, etc. [3], and ex-
perimentally evaluated di�erent protocols for interoperation between providers,
requesters and various types of middle agents. Figure 1 shows the protocol for
two di�erent types of middle agents: brokers and matchmakers. We have also
developed protocols for distributed matchmaking [12]. The process of �nding
an appropriate provider through a middle agent is called matchmaking. It has
the following general form:

� Provider agents advertise their capabilities such as know-how, expertise,
and so on, to middle agents.

� Middle agents store these advertisements.

� A requester asks some middle agent whether it knows of providers with
desired capabilities.

� The middle agent matches the request against the stored advertisements
and returns the result.

While this process at �rst glance seems very simple, it is complicated by the
fact that providers and requesters are usually heterogeneous and incapable in
general of understanding each other. This di�culty gives rise to the need for a
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common language for describing the capabilities and requests of software agents
in a convenient way. In addition, one has to devise a mechanism for matching
descriptions in that language. This mechanism can then be used by middle
agents to e�ciently select relevant agents for some given tasks.

In the following, we �rst elaborate the desiderata of an agent capability
description language (ACDL), and propose such an ACDL, called Larks, in
detail. Then we will discuss the matchmaking process using Larks and give a
complete working scenario with some examples. We have implemented Larks
and the associated powerful matchmaking process, and are currently incorpo-
rating it within our RETSINA multi-agent infrastructure framework [22]. The
paper concludes with comparing our language and the matchmaking process
with related works.

2 Matchmaking Among Heterogeneous Agents

In the process of matchmaking (see Fig. 1) are three di�erent kinds of collabo-
rating agents involved:

1. Provider agents provide their capabilities, e.g., information search ser-
vices, retail electronic commerce for special products, etc., to their users
and other agents.

2. Requester agents consume informations and services o�ered by provider
agents in the system. Requests for any provider agent capabilities have to
be sent to a matchmaker agent.

3. Matchmaker agents mediate among both, requesters and providers, for
some mutually bene�cial cooperation. Each provider must �rst register
himself with a matchmaker. Provider agents advertise their capabilities
(advertisements) by sending some appropriate messages describing the
kind of service they o�er.

Every request a matchmaker receives will be matched with his actual set
of advertisements. If the match is successful the matchmaker returns a
ranked set of appropriate provider agents and the relevant advertisements
to the requester.

In contrast to a broker agent, a matchmaker does not deal with the task of
contacting the relevant providers, transmitting the service request to the service
provider and communicate the results to the requester. This avoids data trans-
mission bottlenecks, but it might increase the amount of interactions among
agents.
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Figure 1: Service Brokering vs. Matchmaking

2.1 Desiderata for an Agent Capability Description Lan-
guage

There is an obvious need to describe agent capabilities in a common language
before any advertisement, request or even matchmaking among the agents can
take place. In fact, the formal description of capabilities is one of the major
problems in the area of software engineering and AI. Some of the main desired
features of such a agent capability description language are the following.

� Expressiveness.
The language is expressive enough to represent not only data and knowl-
edge, but also to describe the meaning of program code. Agent capabilities
are described at an abstract rather than implementation level. Most of
existing agents can be distinguished by describing their capabilities in this
language.

� Inferences.
Inferences on descriptions written in this language are supported. A user
can read any statement in the language, and software agents are able to
process, especially to compare any pair of statements automatically.

� Ease of Use.
Every description should not only be easy to read and understand, but
also easy to write by the user. The language supports the use of domain or
common ontologies for specifying agents capabilities. It avoids redundant
work for the user and improves the readability of speci�cations.
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� Application in the Web.
One of the main application domains for the language is the speci�cation
of advertisements and requests of agents in the Web. The language allows
for automated exchange and processing of informationamong these agents.

In addition, the matchmatching process on a given set of capability descrip-
tions and a request, both written in the chosen ACDL, should be e�cient, most
accurate, not only rely on keyword extraction and comparison, and fully auto-
mated.

3 The Agent Capability Description Language

Larks

Representing capabilities is a di�cult problem that has been one of the major
concerns in the areas of software engineering, AI, and more recently, in the
area of internet computing. There are many program description languages,
like VDM or Z[28], to describe the functionalities of programs. These languages
concern too much detail to be useful for the searching purpose. Also, reading
and writing speci�cations in these languages require sophisticated training. On
the other hand, the interface de�nition languages, like IDL, WIDL, go to the
other extreme by omitting the functional descriptions of the services at all. Only
the input and output information are provided.

In AI, knowledge description languages, like KL-ONE, or KIF are meant to
describe the knowledge instead of the actions of a service. The action repre-
sentation formalisms like STRIPS are too restrictive to represent complicated
service. Some agent communication languages like KQML and FIPA concen-
trate on the communication protocals (message types) between agents but leave
the content part of the language unspeci�ed.

In internet computing, various description format are being proposed, no-
tably the WIDL and the Resource Description Framework(RDF)[27]. Although
the RDF also aims at the interoperablity between web applications, it is rather
intended to be a basis for describing metadata. RDF allowes di�erent vendors
to describe the properties and relations between resources on the Web. That
enables other programs, like Web robots, to easily extract relevant information,
and to build a graph structure of the resources available on the Web, without
the need to give any speci�c information. However, the description does not
describe the functionalities of the Web services.

Since none of those languages satis�es our requirements, we propose an
ACDL, called Larks (Language for Advertisement andRequest forKnowledge
Sharing) that enables for advertising, requesting and matching agent capabili-
ties. It satis�es the desiderata given in the former section.

3.1 Speci�cation in Larks

A speci�cation in Larks is a frame with the following slot structure.
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Context Context of speci�cation
Types Declaration of used variable types
Input Declaration of input variables
Output Declaration of output variables
InConstraints Constraints on input variables
OutConstraints Constraints on output variables
ConcDescriptions Ontological descriptions of used words

The frame slot types have the following meaning.

� Context.
The context of the speci�cation in the local domain of the agent.

� Types.
Optional de�nition of the used data types. If not used, all data types are
assumed to be de�ned in the following slots for input and output variables.

� Input and Output.
Input/output variables for required input/output knowledge to describe a
capability of an agent: if the input given to an agent �ts with the speci�ed
input declaration part, then the agent is able to process an output as
speci�ed in the output declaration part. Processing takes all speci�ed
constraints on the input and output variables into consideration.

� InConstraints and OutConstraints.
Logical constraints on input/output variables in the input/output decla-
ration part. The constraints are speci�ed as Horn clauses.

� ConcDesriptions.
Optional description of the meaning of words used in the speci�cation. The
description relies on concepts in a given local domain ontology. Attache-
ment of a concept C to a word w in any of the slots above is done in the
form: w*C. That means that the concept C is the ontological description
of the word w. The concept C is included in the slot ConcDescription.

In our current implementation we assume each local domain ontology to be
written in the concept language ITL (Information Terminological Language).
the syntax and semantics of the Itl are given in the appendix. Section 3.3 gives
an example for how to attach concepts in a Larks speci�cation, and also shows
an example domain ontology in ITL. A generic interface for using ontologies
in Larks expressed in languages other than Itl will be implemented in near
future.

Every speci�cation in Larks can be interpreted as an advertisement as well
as a request; this depends on the purpose for which an agent sends a speci�cation
to some matchmaker agent(s). Every Larks speci�cation must be wrapped up
in an appropriate KQML message by the sending agent indicating if the message
content is to be treated as a request or an advertisement.
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3.2 Examples of Speci�cations in Larks

The following two examples show how to describe in Larks the capability to
sort a given list of items, and return the sorted list. Example 3.1 is the the spec-
i�cation of the capability to sort a list of at most 100 integer numbers, whereas
in example 3.2 a more generic kind of sorting real numbers or strings is speci�ed
in Larks. Note that the ConcDescriptions slot is empty, i.e. the semantics of
the words in the speci�cation are assumed to be known to the matchmaker

Example 3.1: Sorting integer numbers

IntegerSort

Context Sort
Types

Input xs: ListOf Integer;
Output ys: ListOf Integer;
InConstraints le(length(xs),100);
OutConstraints before(x,y,ys) < � ge(x,y);

in(x,ys) < � in(x,xs);
ConcDescriptions
�

Example 3.2: Generic sort of real numbers or strings

GenericSort

Context Sorting
Types

Input xs: ListOf Real j String;
Output ys: ListOf Real j String;
InConstraints

OutConstraints before(x,y,ys) < � ge(x,y);
before(x,y,ys) < � preceeds(x,y);
in(x,ys) < � in(x,xs);

ConcDescriptions
�

The next example is a speci�cation of an agent's capability to buy stocks at
a stock market. Given the name of the stock, the amount of money available for
buying stocks and the shares for one stock, the agent is able to order stocks at
the stock market. The constraints on the order are that the amount for buying
stocks given by the user covers the shares times the current price for one stock.
After performing the order the agent will inform the user about the stock, the
shares, and the gained bene�t.

Example 3.3: Selling stocks by a portfolio agent
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sellStock

Context Stock, StockMarket;
Types

Input symbol: StockSymbols;
yourMoney: Money;
shares: Money;

Output yourStock: StockSymbols;
yourShares: Money;
yourChange: Money;

InConstraints yourMoney >= shares*currentPrice(symb);
OutConstraints yourChange = yourMoney - shares*currentPrice(symb);

yourShares = shares; yourStock = symbol;
ConcDescriptions

�

3.3 Using Domain Knowledge in Larks

As mentioned before, Larks o�ers the option to use application domain knowl-
edge in any advertisement or request. This is done by using a local ontology for
describing the meaning of a word in a Larks speci�cation. Local ontologies can
be formally de�ned using, e.g., concept languages such as Itl (see Appendix),
BACK, LOOM, CLASSIC or KRIS, a full-
edged �rst order predicate logic,
such as the knowledge interchange format (KIF), or even the uni�ed modeling
language (UML).

The main bene�t of that option is twofold: (1) the user can specify in more
detail what he is requesting or advertising, and (2) the matchmaker agent is able
to make automated inferences on such kind of additional semantic descriptions
while matching Larks speci�cations, thereby improving the overall quality of
matching.

Example 3.4: Finding informations on computers

Suppose that a provider agent such as, e.g., HotBot, Excite, or even a meta-
searchbot, like SavvySearch or MetaCrawler, advertises the capability to �nd
informations about any type of computers. The administrator of the agent may
specify that capability in Larks as follows.
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FindComputerInfo

Context Computer*Computer;
Types InfoList = ListOf(model: Model*ComputerModel,

brand: Brand*Brand,
price: Price*Money, color: Color*Colors);

Input brands: SetOf Brand*Brand;
areas: SetOf State;
processor: SetOf CPU*CPU;
priceLow*LowPrice: Integer;
priceHigh*HighPrice: Integer;

Output Info: InfoList;
InConstraints

OutConstraints sorted(Info).
ConcDescriptions Computer = (and Product (exists has-processor CPU)

(all has-memory Memory) (all is-model ComputerModel));
LowPrice = (and Price (ge 1800)(exists in-currency aset(USD)));
HighPrice = (and Price (le 50000)(exists in-currency aset(USD)));
ComputerModel =
aset(HP-Vectra,PowerPC-G3,Thinkpad770,Satellite315);
CPU = aset(Pentium,K6,PentiumII,G3,Merced)
[Product, Colors, Brand, Money]

Most words in this speci�cation have been attached with a name of some
concept out of a given ontology. The de�nitions of these concepts are included
in the slot ConcDescriptions. Concept de�nitions which were already sent
to the matchmaker are enclosed in brackets. In this example we assume the
underlying ontology to be written in the concept language Itl. An example for
such an ontology is given in the next section.

Suppose that an agent registers himself at some matchmaker agent and sends
the above speci�cations as advertisements. The matchmaker will then treat that
agent as a provider agent, i.e., an agent who is capable to provide all these kinds
of services.

3.3.1 Example for a Domain Ontology in the Concept Language Itl

As mentioned before, our current implementation of Larks assumes the domain
ontology to be written in the concept language ITL.

The research area on concept languages (or description logics) in AI has
its origins in the theoretical de�ciencies of semantic networks in the late 70's.
KL-ONE was the �rst concept language providing a well-founded semantic for a
more native language-based description of knowledge. Since then di�erent con-
cept languages are intensively investigated; they are almost decidable fragments
of �rst-order predicate logic. Several knowledge representation and inference
systems, such as CLASSIC, BACK, KRIS, or CRACK, based on such languages
are available.

Conceptual knowledge about a given application domain, or even common-
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sense, is de�ned by a set of concepts and roles as terms in the given concept
language; each term as a de�nition of some concept C is a conjunction of logical
constraints which are necessary for any object to be an instance of C. The
set of terminological de�nitions forms a terminology. Any canonical de�nition
of concepts relies in particular on a given basic vocabulary of words (primitive
components) which are not de�ned in the terminology, i.e., their semantic is
assumed to be known and consistently used across boundaries.

The following terminology, is written in the concept language Itl and de-
�nes concepts in the computer application domain. It is in particular used in
the example 3.4 in the former section.

Product = (and (all is-manufactured-by Brand) (atleast 1 is-manufactured-by)
(all has-price Price))

Computer = (and Product (exists has-processor CPU) (all has-memory Memory)
(all is-model ComputerModel))

Notebook = (and Computer (all has-price
(and (and (ge 1000) (le 2999)) (all in-currency aset(USD)) )
(all has-weight (and kg (le 5)) (all is-manufactured-by
Company))

(all is-model aset(Thinkpad380,Thinkpad770,Satellite315))))
Brand = (and Company (all is-located-in State))
State = (and (all part-of Country) aset(VA,PA,TX,OH,NY))
Company = aset(IBM,Toshiba,HP,Apple,DEC,Dell,Gateway)
Colors = aset(Blue,Green,Yellow,Red)
Money = (and Real (all in-currency aset(USD,DM,FF,Y,P)))
Price = Money
LowPrice = (and Price (ge 1800)(exists in-currency aset(USD))),
HighPrice = (and Price (le 50000)(exists in-currency aset(USD)))
ComputerModel = aset(HP-Vectra,PowerPC-G3,Thinkpad380,Thinkpad770,Satellite315)
CPU = aset(Pentium,K6,PentiumII,G3,Merced)

�

3.3.2 Subsumption Relationships Among Concepts

One of the main inferences on ontologies written in concept languages is the
computation of the subsumption relation among two concepts: A concept C
subsumes another concept C0 if the extension of C0 is a subset of that of C.
This means, that the logical constraints de�ned in the term of the concept C0

logically imply those of the more general concept C.
Any concept language is decidable if it is for concept subsumption among

two concepts de�ned in that language. The concept language Itl we use is
NP-complete decidable. The well-known trade-o� between expressiveness and
tractability of concept languages in practice is surrounded almost by subsump-
tion algorithms which are correct but incomplete. We use an incomplete in-
ference algorithm for computing subsumption relations among concepts in Itl.

12



   LARKS Protocol
   for providing
   the service

Matchmaker Agent x

AdvertisementDB
ConceptDB
AuxiliaryDB

Requester Agent
Provider Agent 1

Provider Agent n ConceptDB 1

ConceptDB n

Matching

Service Request
in LARKS

Result-of-Matching

Process Request
on Local IS IS

ISIS?

Capability Descriptions 
in  LARKS

Figure 2: Matchmaking using Larks: An Overview

For the mechanism of subsumption computation we refer the reader to, e.g.,
[19, 14, 20, 21].

The computation of subsumption relationships among all concepts in a ontol-
ogy yields a so-called concept hierarchy. Both, the subsumption computation
and the concept hierarchy are used in the matchmaking process (see section
4.1.2).

4 The Matchmaking Process Using Larks

As mentioned before, we di�erentiate between three di�erent kinds of collab-
orating information agents: provider, requester and matchmaker agents. The
following �gure shows an overview of the matchmaking process using Larks.

The matchmaker agent process a received request in the followingmain steps:

� Compare the request with all advertisements in the advertisement database.

� Determine the provider agents whose capabilities match best with the
request. Every pair of request and advertisement has to go through several
di�erent �ltering during the matchmaking process.

� Inform the requesting agent by sending them the contact addresses and
related capability descriptions of the relevant provider agents.

For being able to perform a steady, just-in-time matchmaking process the in-
formation model of the matchmaker agent comprises the following components.
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1. Advertisement database (ADB).
This database contains all advertisements written in Larks the match-
maker receives from provider agents.

2. Partial global ontology.
The ontology of the matchmaker consists of all ontological descriptions
of words in advertisements stored in the ADB. Such a description is in-
cluded in the slot ConcDescriptions and sent to the matchmaker with
any advertisement.

3. Auxiliary database.
The auxiliary data for the matchmaker comprise a database for word pairs
and word distances, basic type hierarchy, and internal data.

Please note that the ontology of a matchmaker agent is not necessarily equal
to the union of local domain ontologies of all provider agents who are actually
registered at the matchmaker. This also holds for the advertisement database.
Thus, a matchmaker agent has only partial global knowledge on available in-
formation in the overall multi-agent system; this partial knowledge might also
be not up-to-date concerning the actual time of processing incoming requests.
This is due to the fact that for e�ciency reasons changes in the local ontology of
an provider agent will not be propagated immediately to all matchmaker agents
he is registered at. In the following we will describe the matchmaking process
using Larks in a more detail.

4.1 The Filtering Stages of the Matchmaking Process

The matching process of the matchmaker is designed with respect to the follow-
ing criteria:

� The matching should not be based on keyword retrieval only. Instead,
unlike the usual free text search engines, the semantics of requests and
advertisements should be taken into consideration.

� The matching process should be automated. A vast amount of agents
appear and disappear in the Internet. It is nearly impossible for a user to
manually search or browse all agents capabilities.

� The matching process should be accurate. For example, if the matches
returned by the match engine are claimed to be exact match or the plug-
in match, those matches should satisfy the de�nitions of exact matching
and plug-in matching.

� The matching process should be e�cient, i.e., it should be fast.

� The matching process should be e�ective, i.e., the set of matches should
not be too large. For the user, typing in a request and receiving hundreds
of matches is not necessarily very useful. Instead, we prefer a small set of
highly rated matches to a given request.
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To ful�ll the matching criteria listed in the above section, the matching
process is organized as a series of increasingly stringent �lters on candidate
agents. That means that matching a given request into a set of advertisements
consists of the following �ve �lters that we organize in three consecutive �ltering
stages:

1. Context Matching

Select those advertisements in the ADB which can be compared with the
request in the same or similar context.

2. Syntactical Matching

This �lter compares the request with any advertisement selected by the
context matching in three steps:

(a) Comparison of pro�les.

(b) Similarity matching.

(c) Signature matching.

The request and advertisement pro�le comparison uses a weighted key-
word representation for the speci�cations and a given term frequency
based similarity measure (Salton, 1989). The last two steps focus on the
(input/output) constraints and declaration parts of the speci�cations.

3. Semantical Matching

This �nal �lter checks if the input/output constraints of any pair of request
and advertisement logically match (see section 4.1.5).

For reasons of e�ciency the context �lter roughly prunes o� advertisements
which are not relevant for a given request. In the following two �ltering stages,
syntactical and semantical matching, the remaining advertisements in the ADB
of the matchmaker are checked in a more detail. All �lters are independent from
each other; each of them narrows the set of matching candidates with respect
to a given �lter criteria.

In our current implementation the matchmaker o�ers di�erent types and
modes of matching a request to a given set of advertisements.

4.1.1 Di�erent Types of Matching in Larks

Agent capability matching is the process of determining whether an advertise-
ment registered in the matchmaker matches a request. But when can we say
two descriptions match against each other? Does it mean that they have the
same text? Or the occurrence of words in one discription su�ciently overlap
with those of another discription? When both descriptions are totally di�erent
in text, is it still possible for them to match? Even if they match in a given
sense, what can we then say about the matched advertisements? Before we
go into the details of the matchmaking process, we should clarify the various
notions of matches of two speci�cations.
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4.1.1.1 Exact Match Of course, the most accurate match is when both
descriptions are equivalent, either equal literally, or equal by renaming the vari-
ables, or equal logically obtained by logical inference. This type of matching is
the most restrictive one.

4.1.1.2 Plug-In Match A less accurate but more useful match is the so-
called plug � in match. Roughly speaking, plug-in matching means that the
agent which capability description matches a given request can be "plugged into
the place" where that request was raised. Any pair of request and advertisement
can di�er in the signatures of their input/output declarations, the number of
constraints, and the constraints themselves. As we can see, exact match is a
special case of plug-in match, i.e., wherever two descriptions are exact match,
they are also plug-in match.

A simple example of a plug-in match is that of the match between a request
to sort a list of integers and an advertisement of an agent that can sort both
list of integers and list of strings. This example is elaborated in section 5.
Another example of plug-in match is between the request to �nd some computer
information without any constraint on the output and the advertisement of an
agent that can provide these informations and sorts the respective output.

4.1.1.3 Relaxed Match The least accurate but most useful match is the
so-called relaxed match. A relaxed match has a much more weaker semantic
interpretation than a exact match and plug-in match. In fact, relaxed match
will not tell whether two descriptions semantically match or not. Instead it
determines how close the two descriptions are by returning just a numerical
distance value. Two descriptions match if the distance value is smaller than a
preset threshold value. Normally the plug-in match and the exact match will
be a special case of the relaxed match if the threshold value is not too small.

An example of a relaxed match is that of the request to �nd the place (or
address) where to buy a Compaq Pentium233 computer and the capability de-
scription of an agent that may provide the price and contact phone number for
that computer dealer.

Di�erent users in di�erent situation may want to have di�erent types of
matches. Although people usually may prefer to have plug-in matches, such
a kind of match does not exist in many cases. Thus, people may try to see
the result of a relaxed match �rst. If there is a su�cient number of relaxed
matches returned a re�ned search may be performed to locate plug-in matching
advertisements. Even when people are interested in a plug-in match for their
requests only, the computational costs for this type of matching might outweigh
its bene�ts.

As mentioned above we have �ve di�erent matching �lters:

1. context matching

2. pro�le comparison
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3. similarity matching

4. signature matching

5. semantical matching

The �rst three �lters are meant for relaxed matching, and the signature and
semantical matching �lter are meant for plug-in matching. Please note, that
the computational costs of these �lters are in increasing order. Users may select
any combinations of these �lters according their demand. Since the similarity
�lter also performs intensive computation one may just select the context �lter
and the pro�le �lter if e�ciency is of major concern.

Based on the given notions of matching we did implement four di�erent
modes of matching for the matchmaker:

1. Complete Matching Mode. All �ltering stages are considered.

2. Relaxed Matching Mode. The �rst two �ltering stages are considered
except signature matching, i.e., the context, pro�le and similarity �lter
only.

3. Pro�le Matching Mode. Only the context matching and comparison
of pro�les is done.

4. Plug-In Matching Mode. In this mode, the matchmaker performs the
signature and semantical matching.

As said above, the matching process proceeds in di�erent �ltering stages. If
the considered advertisement and request contain conceptual attachments (on-
tological description of used words), then in most of the �ltering stages (except
for the comparison of pro�les) we need a way to determine the semantic distance
between the de�ned concepts. For that we use the computation of subsumption
relationships and a weighted associative network.

4.1.2 Computation of Semantic Distances Among Concepts

We have presented the notion of concept subsumption in section 3.3.2. But the
concept subsumption gives only a generalization/specialization relation based
on the de�nition of the concepts via roles and attribute sets. In particular for
matchmaking the identi�cation of additional relations among concepts is very
useful because it leads to a deeper semantic understanding. Moreover, since
the expressivity of the concept language Itl is restrictive so that performance
can be enhanced, we need some way to express additional associations among
concepts.

For this purpose we use a so-called weighted associative network, that is a
semantic network with directed edges between concepts as nodes. Any edge
denotes the kind of a binary relation among two concepts, and is labeled in
addition with a numerical weight (interpreted as a fuzzy number). The weight
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indicates the strength of belief in that relation, since its real world semantics
may vary1. We assume that the semantic network consists of three kinds of
binary, weighted relationships: (1) generalization, (2) specialization (as inverse
of generalization), and (3) positive association among concepts (Fankhauser
et al., 1991). The positive association is the most general relationship among
concepts in the network indicating them as synonyms in some context. Such a
semantic network is called an associative network (AN).

In our implementation we create an associative network by using the con-
cept hierarchy of a given terminology de�ned in the concept language Itl. All
subsumption relations in this concept hierarchy are used for setting the gen-
eralization and specialization relations among concepts in the corresponding
associative network. Positive associations may be set by the administrator or
user. Positive association, generalization and specialization are transitive.

As mentioned above, every edge in the associative network is labeled with
a fuzzy weight. These weights are set by the user or automatically by default.
The distance between two concepts in an associative network is then computed
as the strength of the shortest path among them. Combining the strength of
each relation in this path is done by using the following triangular norms for
fuzzy set intersections (Kruse et al., 1991):

�1(�; �) = maxf0; �+ � � 1g n = �1
�2(�; �) = � � � n = 0
�3(�; �) = minf�; �g n =1

Since we have three di�erent kinds of relationships among two concepts in
an AN the kind and strength of a path among two arbitrary concepts in the
network is determined as shown in the following tables. For a formal discussion
of that issue we refer to the work of Fankhauser et al. (1991), Kracker (1992),
and Fankhauser and Neuhold (1992).

g s p

g g p p
s p s p
p p p p

Table 1: Kind of paths in an AN.

g s p

g �3 �1 �2
s �1 �3 �2
p �2 �2 �2

Table 2: Strength of paths in an AN.

For all 0 � �; � � 1 holds that �1(�; �) � �2(�; �) � �3(�; �). Each tri-
angular norm is monotonic, commutative and associative, and can be used as
axiomatic sceletons for fuzzy set intersection. We restrict ourselves to a pes-
simistic, neutral, and optimistic t-norm �1; �2 and �3, respectively.

Since these triangular norms are not mutually associative the strength of a
path in an associative network depends on the direction of strength composition.
This asymmetry in turn might lead to unintuitive derived results: Consider, e.g.,
a path consisting of just three relations among four concepts C1; C2; C3; C4 with

1The relationships are fuzzy, and one cannot possibly associate all concepts with each
other.
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C1 )g;0:6 C2 )g;0:8 C3 )p;0:9 C4. It holds that �2(�3(0:6; 0:8); 0:9) = 0:54, but
the strength of the same path in opposite direction is �2(�2(0:9; 0:8); 0:6) = 0:43.
According to Fankhauser and Neuhold (1992) we can avoid this asymmetry by
imposing a precedence relation (3 > 2 > 1) for strength combination (see Table
3).

g s p

g 2 3 1
s 1 2 1
p 1 1 3

Table 3: Computational precedence for the strength of a path.

The computation of semantic distances among concepts is used in most of
the �ltering stages of the matching process. We will now describe each of the
�lters in detail.

4.1.3 Context Matching

It is obvious that any matching of two speci�cations has to be in an appropriate
context. Suppose a provider agent advertises to sell several di�erent types of
products, like cars, computers, shoes, etc. Further assume that all his adver-
tisements include the only input variable declaration: brand: SetOf Brand;
But what is meant by the type 'Brand' in the context of any speci�cation of
a capability of �nding a particular item? Without any additional knowledge
about the particular context, a request to �nd information about a particular
item, like computers, would match with all product advertisements.

In Larks there are two possibilities to deal with this problem which is con-
nected to the well-known ontological mismatch problem. First, the Context slot
in a speci�cation S contains a (list of) words denoting the domain of discourse
for matching S with any other speci�cation. When comparing two speci�cations
it is assumed that their domains, means their context, are the same (or atleast
su�ciently similar) as long as the real-valued distances between these words do
not exceed a given threshold2. The matching process only proceeds if that is
true.

Second, every word in a Larks speci�cation may be associated with a con-
cept in a given domain ontology. Again, if the context of both speci�cations
turned out to be su�ciently similar in the step before then the concept de�ni-
tions describe the meaning of the words they are attached to in a more detail
in the same domain. In this case, two concepts with same name but di�erent
de�nitions will be stored separately by extending each concept name by the
identi�er of the agent who did send this concept.

To summarize, the context matching consists of two consecutive steps:

2Any distance between two words is computed by an appropriate word distance function
using the auxiliary database of the matchmaker.
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1. For every pair of words u; v given in the context slots compute the real-
valued word distances dw(u; v) 2[0,1]. Determine the most similarmatches
for any word u by selecting words v with the minimum distance value
dw(u; v). These distances must not exceed a given threshold.

2. For every pair of most similar matching words, check that the semantic
distance among the attached concepts does not exceed a given threshold.

4.1.4 Syntactical Matching

4.1.4.1 Comparison of Pro�les The comparison of two pro�les relies on a
standard technique from the Information Retrieval area, called term frequency-
inverse document frequency weighting (TF-IDF) (see Salton, 1989). According
to that, any speci�cation in Larks is treated as a document.

Each word w in a document Req is weighted for that document in the fol-
lowing way. The number of times w occurs throughout all documents is called
the document frequency df(w) of w. The used collection of documents is not
unlimited, such as the advertisement database of the matchmaker.

Thus, for a given document d, the relevance of d based on a word w is
proportional to the number wf(w; d) of times the word w occurs in d and inverse
proportional to df(w). A weight h(w; d) for a word in a document d out of a set
D of documents denotes the signi�cance of the classi�cation of w for d, and is
de�ned as follows:

h(w; d) = wf(w; d) � log( jDj
df(w) ).

The weighted keyword representation wkv(d; V ) of a document d contains
for every word w in a given dictionary V the weight h(w; d) as an element. Since
most dictionaries provide a huge vocabulary we cut down the dimension of the
vector by using a �xed set of appropriate keywords determined by heuristics
and the set of keywords in Larks itself.

The similarity dps(Req;Ad) of a request Req and an advertisement Ad under
consideration is then calculated by :

dps(Req;Ad) =
Req � Ad
jReqj � jAdj

where Req �Ad denotes the inner product of the weighted keyword vectors.
If the value dps(Req;Ad) does exceed a given threshold � 2 R the matching
process continues with the following steps.

The matchmaker then checks if the declarations and constraints of both
speci�cations for a request and advertisement are su�ciently similar. This is
done by a pairwise comparison of declarations and constraints in two steps:

1. Similarity matching and

2. Signature matching
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4.1.4.2 Similarity Matching Let Ei; Ej be variable declarations or con-
straints, and S(E) the set of words in E. The similarity among two expressions
Ei and Ej is determined by pairwise computation of word distances as follows:

Sim(Ei; Ej) = 1� ((
P

(u;v)2S(Ei)�S(Ej )

dw(u; v))=jS(Ei)� S(Ej)j))

The similarity value Sim(Sa ; Sb) among two speci�cations Sa and Sb in
Larks is computed as the average of the sum of similarity computations among
all pairs of declarations and constraints:

Sim(Sa ; Sb) =P
(Ei;Ej )2(D(Sa)�D(Sb))U(C(Sa)�C(Sb))

Sim(Ei; Ej)=j(D(Sa)�D(Sb))U (C(Sa)�C(Sb))j

withD(S) and C(S) denoting the input/output declaration and input/output
constraint part of a speci�cation S in Larks, respectively.

4.1.4.3 SignatureMatching Consider the declaration parts of the request
and the advertisement, and determine pairwise if their signatures of the (input
or output) variable types match following the type inference rules given below.

De�nition 4.1: Subtype Inference Rules

Consider two types t1 and t2 as part of an input or output variable declaration
part (in the form Input v : t1; or Output v : t2;) in a Larks speci�cation.

1. Type t1 is a subtype of type t2 (denoted as t1 �st t2) if this can be deduced
by the following subtype inference rules.

2. Two types t1; t2 are equal (t1 =st t2) if t1 �st t2 and t2 �st t1 with

(a) t1 =st t2 if they are identical t1 = t2

(b) t1 j t2 =st t2 j t1 (commutative)

(c) (t1 j t2) j t3 = t1 j (t2 j t3) (associative)

Subtype Inference Rules:

1) t1 �st t2 if t2 is a type variable

2)
t1 =st t2
t1 �st t2

3) t1; t2 are sets,

t1 � t2
t1 �st t2

4) t1 �st t1 j t2

5) t2 �st t1 j t2
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6)
t1 �st t2; s1�sts2
(t1;s1) �st (t2;s2)

7)
t1 �st t2; s1�sts2
t1js1 �st t2js2

8)
t1 �st t2

SetOf(t1) �st SetOf(t2)

9)
t1 �st t2

ListOf(t1) �st ListOf(t2)

�

Matching of two signatures sig and sig0 is done by a binary string-valued
function fsm on signatures with

fsm(sig; sig0 ) =

8>><
>>:

sub sig0 �st sig
Sub sig �st sig0

eq sig =st sig
0

disj else

Having described both �lters of the syntactical matching we now de�ne the
meaning of syntactical matching of two speci�cations written in Larks.

De�nition 4.2: Syntactical matching of speci�cations in Larks

Consider two speci�cations Sa and Sb in Larks with nk input declarations, mk

output declarations, and vk constraints nk;mk 2N; k 2 fa; bg, two declarations
Di, Dj , and constraints Ci, Cj in these speci�cations, and V a given dictionary
for the computation of weighted keyword vectors. Let �; 
; � be real threshold
values for pro�le comparison and similarity matching.

� The declarations Di and Di syntactically match if they are su�-
ciently similar:

Sim(Di ; Dj) � 
 ^ fsm(Di ; Dj) 6= disj.

The constraints Ci and Cj syntactically match if they are su�ciently
similar:

Sim(Ci; Cj) � 
.

If both words in every pair (u; v) 2 S(Ei) � S(Ej) of most similar words
are associated with a concept C and C0, respectively, then the distance
among C and C0 in the so-called associative network of the matchmaker
must not exceed a given threshold value �.

The syntactical match of two declarations or constraints is denoted by a
boolean predicate Synt.
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� The speci�cations Sa and Sb syntactically match if

1. their pro�les match, i.e., dps(Sa; Sb) � �, and

2. for each declaration or constraint Ei, i 2 f1; :::nag in the declaration
or constraint part of Sa there exists a most similar matching declara-
tion or constraint Ej, j 2 f1; :::; nbg in the declaration or constraint
part of Sb such that

Synt(Ei; Ej) ^ Sim(Ei; Ej) = maxfSim(Ei; Ey); y 2 f1; ::; nbgg

(Analogous for each declaration or constraint in Sb.)

3. for each pair of declarations determined in (1.) the matching of their
signatures is of the same type, i.e., for each (Di; Dj) in (1.) it holds
that the value fsm(Di ; Dj) is the same, and

4. the similarity value Sim(Sa ; Sb) exceeds a given threshold.

�

4.1.5 Semantical Matching

By using the syntactical �lter many matches might be found in a large agent
society. Hence, it is important to use some kind of semantic information to
narrow the search, and to pin down more precise matches.

The most common and natural interpretation for a speci�cation (even for
a software program) is using sets of pre- and post-conditions, denoted as PreS
and PostS , respectively. In a simpli�ed notation, any speci�cation S can be
represented by the pair (PreS; P ostS).

De�nition 4.3: Semantical matching of two speci�cations

Consider two speci�cations S(PreS ; P ostS) and T (PreT ; P ostT ).

The speci�cation S semantically matches the speci�cation T if

(PreS ) PreT ) ^ (PostT ) PostS)

That means, the set of pre-conditions of S logically implies that of T , and
the set of post-conditions of S is logically implied by that of T .
�

The problem in performing the semantical matching is that the logical im-
plication is not decidable for �rst order predicate logic, and even not for a set
of Horn clauses. To make the matching process tractable and feasible, we have
to decide on the expressiveness of the language used to represent the pre- and
post- conditions, and to choose a relation that is weaker than logical impli-
cation. The �-subsumption relation among two constraints C;C0 (denoted as
C �� C0) appears to be a suitable choice for semantical matching, because it is
computationally tractable and semantically sound.
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PostS

capability  S

Capability T 

PreT

PostT

plug-in

Figure 3: Plug-In Match of Speci�cations: T plugs into S.

4.1.5.1 Plug-in Semantical Matching in LARKS It is proven in the
software engineering area that if the condition of semantical matching in de�-
nition 4.3 holds, and the signatures of both speci�cations match, then T can be
directly used in the place of S, i.e., T plugs in S (see �gure 4.1.5).

De�nition 4.4: Plug-In semantical matching of two speci�cations

Given two speci�cations Spec1 and Spec2 in Larks then Spec1 plug-inmatches
Spec2 if

� Their signatures matches (see section 4.1.4.2).

� For every clause C1 in the set of input constraints of Spec1 there is a
clause C2 in the set of input constraint of Spec2 such that C1 �� C2.

� For every clause C2 in the set of output constraints of Spec2 there is a
clause C1 in the set of output constraints of Spec1 such that C2 �� C1.

where �� denotes the �-subsumption relation between constraints.
�

4.1.5.2 �-Subsumption between Constraints One suitable selection of
the language and the relation is the (de�nite program) clause and the the
so-called �-subsumption relation between clauses, respectively.3 In the fol-
lowing we will only consider Horn clauses. A general form of Horn clause is

3A clause is a �nite set of literals, which is treated as the universally quanti�ed disjunction
of those literals. A literalmay be positive or negative. A positive literal is an atom, a negtive
literal is the negation of an atom. A definite program clause is a clause with one positive
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a0 _ (:a1) _ ::: _ (:an), where each ai; i 2 f1; :::; ng is an atom. This
is equivalent to a0 _ :(a1 ^ ::: ^ an), which in turn is equivalent to
(a1 ^ ::: ^ an) ) a0).4 We adopt the standard notation for that clause as
a0  a1; ::: ; an; in PROLOG the same clause is written as a0 :- a1; ::: ; an.

Examples of de�nite program clauses are

� Date:year > 1995, sorted(computerInfo),

� before(x; y; ys)  ge(x; y), and

� scheduleMeeting(group1; group2; interval;meetingDuration;meetT ime)  
belongs(p1; group1); belongs(p2; group2); subset(meetT ime; interval); length(meetT ime) =
meetingDuration; available(p1;meetT ime); available(p2;meetT ime):

We say that a clause C �-subsumes another clause D (denoted as C �� D)
if there is a substitution � such that C� � D. C and D are �-equivalent if
C �� D and D
preceq�C.

Examples of �-subsumption between clauses are

� P (a) Q(a) �� P (X) Q(X)

� P (X) Q(X); R(X) �� P (X) Q(X).

Since a single clause is not expressive enough, we need to use a set of clauses
to express the pre and post conditions (i.e., the input and output constraints)
of a speci�cation in Larks. A set of clauses is treated as a conjunction of those
clauses.

Subsumption between two set of clauses is de�ned in terms of the subsump-
tion between single clauses. More speci�cally, let S and T be such sets of clauses.
Then, we de�ne that S �-subsumes T if every clause in T is �-subsumed by a
clause in S.

There is a complete algorithm to test the �-subsumption relation, which is
in general NP-complete but polynomial in certain cases. On the other hand,
�-subsumption is a weaker relation than logical implication, i.e., from C �� D
we can only infer that C logically implies D but not vice versa.5

5 Examples of Matchmaking using Larks

Consider the speci�cations 'IntegerSort' and 'GenericSort' (see example 3.1, 3.2)
as a request of sorting integer numbers and an advertisement for some agent's

literal and zero or more negative literals. A definite goal is a clause without positive literals.
A Horn clause is either a de�nite program clause or a de�nite goal.

4The literal a0 is called the head of the clause, and (a1 ^ ::: ^ an) is called the body of
the clause.

5Please also note that the �-subsumption relation is similar to the query containment in
database. When advertisements are database queries, speci�cationmatching is reduced to the
problem of query containment testing.

25



capability of sorting real numbers and strings, respectively.

IntegerSort

Context Sort

Types

Input xs: ListOf Integer;
Output ys: ListOf Integer;

InConstraints le(length(xs),100);
OutConstraints before(x,y,ys) < � ge(x,y);

in(x,ys) < � in(x,xs);
ConcDescriptions

GenericSort

Context Sorting
Types

Input xs: ListOf Real j String;
Output ys: ListOf Real j String;
InConstraints

OutConstraints before(x,y,ys) < � ge(x,y);
before(x,y,ys) < � preceeds(x,y);
in(x,ys) < � in(x,xs);

ConcDescriptions

Assume that the requester and provider agent sends the request IntegerSort
and advertisment GenericSort to the matchmaker, respectively. Figure 5 de-
scribes the overall matchmaking process for that request.

1. Context Matching

Both words in the Context declaration parts are su�ciently similar. We
have no referenced concepts to check for terminologically equity. Thus,
the matching process proceeds with the following two �ltering stages.

2. Syntactical Matching

(a) Comparison of Pro�les

According to the result of TF-IDF method both speci�cations are
su�ciently similar:

(b) Signature Matching

Consider the signatures t1= (ListOf Integer) and t2= (ListOf
RealjString). Following the subtype inference rules 9., 4. and 1.
it holds that t1 �st t2, but not vice versa, thus fsm(D11; D21) =
sub. Analogous for fsm(D12; D22) = sub.
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Requester Agent

IntegerSort

“Find agent that
can sort integer
numbers”

Figure 4: An Example of Matchmaking using Larks

(c) Similarity Matching

Using the current auxiliary database for word distance values simi-
larity matching of constraints yields:

le(length(xs),100)) null = 1.0
before(x,y,ys) < � ge(x,y) in(x,ys) < � in(x,xs) = 0.5729
in(x,ys) < � in(x,xs) before(x,y,ys) < � preceeds(x,y)) = 0.4375
before(x,y,ys)< � ge(x,y)) before(x,y,ys) < � preceeds(x,y)) = 0.28125

The similarity of both speci�cations is computed as:
Sim(IntegerSort; GenericSort) = 0:64.

3. Semantical Matching

The advertisement GenericSort also matches semantically with the re-
quest IntegerSort, because the set of input constraints of IntegerSort �-
subsumes that of GenericSort, and the output constraints of GenericSort
�-subsumes that of IntegerSort. Thus GenericSort plugs into IntegerSort.
Please note that this does not hold vice versa.

6 Related works

Agent matchmaking has been actively studied since the inception of software
agent research. The earlist matchmaker we are aware of is the ABSI facilitator,
which is based on the KQML speci�cation and uses the KIF as the content
language. The KIF expression is basically treated like the Horn clauses. The
matching between the advertisement and request expressed in KIF is the simple
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uni�cation with the equality predicate. Matchmaking using Larks performs
better than ABSI in both, the language and the matching process. The plug-in
matching in Larks uses the �-subsumption test, which select more matches
that are also semantically matches.

The SHADE and COINS[17] are matchmakers based on KQML. The content
language of COINS allowes for the free text and its matching algorithm utilizes
the tf-idf. The contect language of SHADE matchmaker consists of two parts,
one is a subset of KIF, another is a structured logic representation called MAX.
MAX use logic frames to declaratively store the knowledge. SHADE uses a
frame like representation and the matcher use the prolog like uni�er.

A more recent service broker-based information system is InfoSleuth[10,
11]. The content language supported by InfoSleuth is KIF and the deductive
database language LDL++, which has a semantics similar to Prolog. The con-
straints for both the user request and the resource data are speci�ed in terms
of some given central ontology. It is the use of this common vocabulary that
enables the dynamic matching of requests to the available resources. The ad-
vertisements specify agents' capabilities in terms of one or more ontologies. The
constraint matching is an intersection function between the user query and the
data resource constraints. If the conjunction of all the user constraints with all
the resource constraints is satis�able, then the resource contains data which are
relevant to the user request.

A somewhat related research area is the research on information mediators
among heterogenous information systems[23][1]. Each local information system
is wrapped by a so-called wrapper agent and their capabilities are described in
two levels. One is what they can provide, usually described in the local data
model and local database schema. Another is what kind of queries they can
answer; usually it is a subset of the SQL language. The set of queries a service
can accept is described using a grammar-like notation. The matching between
the query and the service is simple: it just decides whether the query can be
generated by this grammar. This area emphasizes the planning of database
queries according to heterogeneous information systems not providing complete
SQL sevices. Those systems are not supposed to be searched for among a vast
number of resources on the Internet.

The desfription of capabilities and matching are not only studied in the agent
community, but also in other related areas.

6.1 Works related with capability description

The problem of capability and service descriptions can be tackled at least from
the following di�erent approaches:

1. Software speci�cation techniques.
Agents are computer programs that have some speci�c characteristics.
There are numerous work for software speci�cations in formal methods,
like model-oriented VDM and Z[28], or algebraic-oriented Larch. Although
these languages are good at describing computer programs in a precise
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way, the speci�cation usually contains too much details to be of interests
to other agents. Besides, those existing languages are so complex that the
semantic comparison between the speci�cations is impossible. The reading
and writing of these speci�cations also require substantial training.

2. Action representation formalisms.
Agent capability can be seen as the actions that the agents perform. There
are a number of action representation formalisms in AI planning like the
classical one the STRIPS. The action representation formalism are inad-
equate in our task in that they are propositional and not involving data
types.

3. Concept languages for knowledge representation.
There are various terminological knowledge representation languages. How-
ever, ontology itself does not describe capabilities. On the other hand, it
provides auxiliary concepts to assist the speci�cation of the capabilities of
agents.

4. Database query capability description.
The database query capability description technique is developed as an
attempt to describe the information sources on the Internet, such that
an automated integration of information is possible. In this approach
the information source is modeled as a database with restricted quering
capabilities.

6.2 Works related with service retrieval

There are three broad approaches to service retrieval. One is the information
retrieval techniques to search for relevant information based on text, another
is the software component retrieval techniques[26][8][13] to search for software
components based on software speci�cations. The third one is to search for web
resources that are typically described as database models[18][23].

In the software component search techniques, [26] de�ned several notions of
matches, including the exact match and the plug-in match, and formally proved
the relationship between those matches. [8] propsed to use a sequence of �lters
to search for software components, for the purpose to increase the e�ciency of
the search process. [13] computed the distance between similar speci�cations.
All these work are based on the algebraic speci�cation of computer programs.
No concept description and concept hierarchy are considered in their work.

In Web resource search techniques, [18] proposed a method to look for better
search engines that may provide more relevant data for the user concerns, and
rank those search engines according to their relevance to user's query. They pro-
pose the directory of services to record descriptions of each information server,
called a server description. A user sends his query to the directory of services,
which determins and ranks the servers relevant to the user's request. Both the
query and the server are described using boolean expression. The search method
is based on the similarity measure between the two boolean expressions.
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7 Conclusion

The Internet is an open system where heterogeneous agents can appear and
disappear dynamically. As the number of agents on the Internet increases,
there is a need to de�ne middle agents to help agents locate others that provide
requested services. In prior research, we have identi�ed a variety of middle agent
types, their protocols and their performance characteristics. Matchmaking is the
process that brings requester and service provider agents together. A provider
agent advertises its know-how, or capability to a middle agent that stores the
advertisements. An agent that desires a particular service sends a middle agent
a service request that is subsequently matched with the middle agent's stored
advertisements. The middle agent communicates the results to the requester
(the way this happens depends on the type of middle agent involved). We
have also de�ned protocols that allow more than one middle agent to maintain
consistency of their adevertisement databases. Since matchmaking is usually
done dynamically and over large networks, it must be e�cient. There is an
obvious trade-o� between the quality and e�ciency of service matching in the
Internet.

We have de�ned and implemented a language, called Larks, for agent ad-
vertisement and request and a matchmaking process using Larks. Larks ju-
diciously balances language expressivity and e�ciency in matching. Larks

performs both syntactic and semantic matching, and in addition allows the
speci�cation of concepts (local ontologies) via ITL, a concept language.

The matching process uses �ve �lters, namely context matching, compari-
son of pro�les, similarity matching, signature matching and semantic matching.
Di�erent degrees of partial matching can result from utilizing di�erent combi-
nations of these �lters. Selection of �lters to apply is under the control of the
user (or the requester agent).
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A Syntax of Larks

De�nition A.1: Syntax of Larks

The syntax of Larks is given by the following production system in EBNF-grammar:

< specification > ::= < Ident > [< CDeclaration >] [< TDeclarations >]
[< Declarations >] [< Constraints >]

< CDeclaration > ::= 0Context0 < CDec >

< CDec > ::= < Ident >0 �0 < Termdefinition >0;0

< TDeclarations > ::= < TDec > j < TDec >0;0< TDeclarations >

< Delarations > ::= 0Input0 < OptDecList > 0Output0 < DecList >

< TDec > ::= 0type0 < Ident > [0::0< TExp >]0;0 j 0basicType0 < IdentList >0;0

< Dec > ::= < Ident >0:0< TExp > [0=0< Exp >]0;0

< DecList > ::= < Dec > j < Dec >0;0< DecList >

< OptDecList > ::= < OptDec > j < OptDec >0;0< OptDecList >

< OptDec > ::= [0Optional0] < Dec >

< TExp > ::= < TV ar > j < BType > j < PType > j < CType >

< PType > ::= Bool0 j Int0 j Real0 j 0String0

< CType > ::= 0(0[< Ident >0:0] < TExp >0;0 [< Ident >0:0] < TExp >0)0 j
< TExp > 0j0 < TExp > j
< TExp > 0� >0 < TExp > j
0SetOf0 0(0< TExp >0)0j
0ListOf 0(0TExp0)0j
0f0< ExpList >0g0

< Exp > ::= < aExp > j 0(0< ExpList >0)0 j 0f0< ExpList >0g0 j
< Exp >0 (0< ExpList >0)0 j < Exp >0 :0 < Ident >

< ExpList > ::= < Exp > j < Exp >0;0 < ExpList >

< aExp > ::= < sConst > j < var > j < const >

< IdentList > ::= < Ident > j < Ident >0;0 < IdentList >

< Constraints > ::= [0InConstraints < formulaList >]
[0OutConstraints0 < formulaList >]

< fomulaList > ::= < formula > j < formula >0;0 < formulaList >

< formula > ::= < atomList >

< atomList > ::= < atom > j < atom >0;0 < atomList >

< atom > ::= < predicate > j 0not0 < predicate >

< predicate > ::= < Ident >

< var > ::= < Ident >

< const > ::= < Ident >

with non-terminals < Ident >;< var >, and < const > denoting an identi�er,
variable and constant, respectively. The non-terminal < Termdefinition > refers
to that in the concept language Itl (see below), thus denoting a kind of a so-called
'escape hatch' from Larks to Itl.

Convention:

In a capability description or request any term de�nition will be replaced by the name

of the corresponding concept or role which is assumed to be available in the local

knowledge base.
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�

B The concept language Itl

De�nition B.1: Syntax of Itl

The syntax of the concept language Itl is given by the following production system
in EBNF-grammar:

< Terminology > ::= < Termdefinition >+

< Termdefinition > ::= < Conceptdefinition > j < Roledefinition >

< Conceptdefinition > ::= < atomicConcept > 0 =' < Concept > j
< atomicConcept > 0 =' < Concept >

< Roledefinition > ::= < atomicRole > 0 =' < Role > j
< atomicRole > 0 =' < Role >

< Concept > ::= < Conc > j < AttrConc >

< Conc > ::= < atomicConcept > j
< primComponent > j 0(not0 < primConcComponent >) j
0(and0 < Concept >+ 0)0 j
0(atleast0 n < Role >0)0 j
0(atmost0 m < Role >0)0 j
0(exists0 < Role > < Concept >0)0 j
0(all0 < Role >< Concept >0)0 j
0(le0 < num >0)0 j 0(ge0 < num >0)0 j
0(lt0 < num >0)0 j 0(gt0 < num >0)0

< AttrConc > ::= 0aset(0< aval >+ 0)0

< Role > ::= 0(androle0 < Role >+ 0)0 j
< atomicRole > j < primRoleComponent >

< atomicConcept > ::= < identifier > j 0nothing0

< atomicRole > ::= < identifier >

< primComponent > ::= < primConcComponent > j < primRoleComponent >

< primConcComponent > ::= < identifier >'.'
< primRoleComponent > ::= < identifier >'.'
< aval > ::= < identifier >

< Term > ::= < Concept > j < Role >

< ObjectSet > ::= < Instance >�

< Instance > ::= < ConceptInstance > j < RoleInstance >

< ConceptInstance > ::= 0(0< Object > < atomicConcept >0)0 j
0(< Object > not0 < primConcComponent >0)0

< RoleInstance > ::= 0(0< Object > < atomicRole > < Object >0)0 j
0(0< Object > < NumRestr > < atomicRole >0)0

< NumRestr > ::= 0atleast0 < num > j 0atmost0 < num >

< Object > ::= < identifier >

The meaning of (atomic) concept or role, attribute concept, concept and role
de�nition, term de�nition, term, terminology and object set is de�ned as the set of
strings which can be reduced to the respective non-terminal symbols in the production
system.

It is assumed that in every terminology T (written in Itl) all used atomic concepts
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and roles are unique identi�ers and de�ned in T ; the enumerable sets of identi�ers for

concepts and roles, attribute values and objects, as well as primitive concept and role

components are assumed to be pairwise disjoint. In addition, every primitive compo-

nent (unde�ned identi�er) in a terminology is assigned a given, �xed meaning6 .
�

De�nition B.2: Semantic of Itl

Let G be a grammar, D interpretation domain and D, Da disjoint subsets with
D = D ]Da. P(S) denotes the power set of any set S. The semantic of Itl
terms is de�ned by the following interpretation function.

� :

8<
:

Conc ! P(D)
Role ! P(D � D)
Attr ! Da

(1)

� is a Itl-interpretation if it satis�es the following equations:

�(and C1:::Cn)) =
n\
i=1

�(Ci) (2)

�((all R C)) = fd 2 D : rg(d; �(R)) � �(C)g (3)

�((exists R C)) = fd 2 D : rg(d; �(R)) \ �(C) 6= ;g (4)

�((atleast n R)) = fd 2 D : j rg(d; �(R)) j � ng (5)

�((atmost n R)) = fd 2 D : j rg(d; �(R)) j � ng (6)

�(aset(a1; :::; an)) = f�(a1); :::; �(an)g (7)

�((not Cp)) = D n �(Cp) (8)

�((androle R1:::Rn)) =
n\
i=1

�(Ri) (9)

�(nothing) = ; (10)

with
rg(d; �(R)) := fy 2 D : (d; y) 2 �(R)g (11)

rg(d; �(R)) denotes the set of role �llers of instance d for the role R.
All attributes a1; :::; an of the concept aset(a1; :::; an) are interpreted as

constants, i.e., for some Da � Attr we assign �(ai) = ai; i 2 f1; ::ng. The
interpretation of the operators (le n), (ge n), (lt n), and (gt n) for numerical
comparison denotes the set of real numbers x 2 D with x � n; x � n; x < n,
and x > n, respectively.

�

6Primitive components are elements of a minimal common vocabulary used by each agent
provider/user for a construction of their local domain-dependent terminologies (and object
sets).
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