DAML-S and Related Technologies

DAML-S is a DAML+OIL ontology for describing Web Services. The
language DAML+-OIL [11] represents part of the Semantic Web initiative
to provide semantics to the Web, i.e. to make Web content unambiguously
computer-interpretable [10]. DAML-S, specifically, aims to make Web ser-
vices computer-interpretable—described with sufficient information to en-
able automated Web service discovery, invocation, composition and execu-
tion monitoring.

As a DAML+OIL ontology, DAML-S retains all the benefits of Web
content described in DAML+OIL. Namely, it has a well-defined semantics,
it enables the definition of a Web services vocabulary in terms of objects
and the complex relationships between them, including class, subclass rela-
tions, cardinality restrictions, etc. [11]. It also includes all the XML typing
information.

The DAML-S ontology comprises three parts:

1. ServiceProfile: This is similar to a yellow page entry for a service.
It describes properties of a service necessary for automatic discovery,
such as the functionality the service offers, and its inputs, outputs,
preconditions and effects.

2. ServiceModel: This describes the service’s process model (the control
flow and data-flow involved in using the service). It is designed to
enable automated composition and execution of services.

3. ServiceGrounding: This connects the process model description to
communication-level protocols and message descriptions in WSDL.

Due to their use of the DAML+OIL ontology-definition language, these
components are annotated with classes of well-defined types that make the
service descriptions machine-readable and unambiguous. Additionally, the
ontological structure of classes allows class definitions to draw properties
from hierarchical inheritance and through relationships to other classes.



1 Related Work

Industry efforts to develop standards for electronic commerce, and in par-
ticular for the description of Web-based services, revolve around UDDI,
WSDL, BPEL4WS and ebXML. There have also been company-specific ini-
tiatives to define architectures for e-commerce, most notably e-speak from
Hewlett-Packard.

In the following sections, we look in greater detail at each of these tech-
nologies in turn and compare them to DAML-S.

1.1 UDDI

UDDI (Universal Description, Discovery and Integration) is an initiative
begun by Microsoft, IBM and Ariba to develop a standard for an online
registry, to enable the publishing and dynamic discovery of Web services
offered by businesses [1]. UDDI allows programmers and other representa-
tives of a business to locate potential business partners and form business
relationships on the basis of the services they provide. It thus facilitates the
creation of new business relationships.

The primary target of UDDI seems to be integration and at least semi-
automation of business transactions in B2B e-commerce applications. It
provides a registry for registering businesses and the services they offer.
These are described according to an XML schema defined by the UDDI
specification. A Web service provider registers its advertisements along with
keywords for categorisation. A Web services user retrieves advertisements
out of the registry based on keyword search. The UDDI search mechanism
relies on predefined categorisation through keywords and does not refer to
the semantic content of the advertisements. The registry is supposed to
function in a fashion similar to white pages or yellow pages, where businesses
can be looked up by name or by a standard service taxonomy as is already
used within the industry. UDDI attempts to cover all kinds of services
offered by businesses, including those that are offered by phone or e-mail
and similar means; in principle, DAML-S could do this, but it has not been
our focus.

Technically speaking, each business description in UDDI consists of a
businessEntity element, akin to a White Pages element describing the con-
tact information for a business. A businessEntity describes a business by
name, a key value, categorisation, services offered (businessService elements)
and contact information for the business. A businessService element de-
scribes a service using a name, key value, categorisation and multiple bind-



ingTemplate elements. This can be considered to be analogous to a Yellow
Pages element that categorises a business. A bindingTemplate element in
turn describes the kind of access the service requires (phone, mailto, http,
ftp, fax etc.), key values and tModellnstances. tModellnstances are used to
describe the protocols, interchange formats that the service comprehends,
that is, the technical information required to access the service. It is also
used to describe the namespaces for the classifications used in categorisa-
tion. Many of the elements are optional, including most of the ones that
would be required for matchmaking or service composition purposes.

UDDI aims to facilitate the discovery of potential business partners and
the discovery of services and their groundings that are offered by known
business partners. This may or may not be done automatically. When this
discovery occurs, programmers affiliated with the business partners program
their own systems to interact with the services discovered. This is also the
model generally followed by ebXML. DAML-S enables more flexible dis-
covery by allowing searches to take place on almost any attribute of the
ServiceProfile. UDDI, in contrast, allows technical searches only on tMod-
elKeys, references to tModellnstances, which represent full specifications of
a kind of service.

UDDI, of itself, does not support semantic descriptions of services. Thus,
depending on the functionality offered by the content language, although
agents can search the UDDI registry and retrieve service descriptions, a
human needs to be involved in the loop to make sense of the descriptions,
and to program the access interface.

UDDI does not provide or specify content languages for advertisement
so far. Although WSDL is most closely associated with UDDI as a content
language, the specification refers to ebXML and XML/edi also as potential
candidates. Content languages could be a possible bridge between UDDI and
DAML-S. DAML-S is also a suitable candidate for a content language and
in this sense, DAML-S and UDDI are complementary. A higher-level service
or standard defined on top of UDDI could take advantage of the additional
richness of content DAML-S has to offer within the UDDI registries. This
has been discussed further in [?]

1.2 WSDL

WSDL (Web Services Description Language) is an XML format, closely as-
sociated with UDDI as the language for describing interfaces to business
services registered with a UDDI database. It is thus closer to DAML-S in
terms of functionality than UDDI. Like DAML-S, it attempts to separate



services, defined in abstract terms, from the concrete data formats and pro-
tocols used for implementation, and defines bindings between the abstract
description and its specific realization [3]. However, the abstraction of ser-
vices is at a lower level than in DAML-S.

Services are defined as endpoints, which are essentially sets of ports, that
is, network addresses associated with certain protocols and data format
specifications. The abstract nature of a service arises from the abstract
nature of the messages and operations mapped to a port and define its
port type. Port types are reusable and can be bound to multiple ports [4].
Operations are of four basic kinds in WSDL: a one-way, a (two-way) request-
response, a (two-way) solicit-response and a (one-way) notification message.
A message itself is defined abstractly as a request, a response or even a
parameter of a request or response and its type, as defined in a type system
like XSD. They can be broken into parts to define the logical break-down of
a message.

Like UDDI, WSDL does not support semantic description of services.
WSDL focuses on the grounding of services and although it has a concept of
input and output types as defined by XSD, it does not support the definition
of logical constraints between its input and output parameters. Thus its
support for discovery and invocation of services is less versatile than that of
DAML-S.

The ability of WSDL to specify the translation from abstract messages
that are expressed in terms of the information to be transmitted, and con-
crete messages that specify the format of the message exchanged has been
exploited by the DAML-S specification of the grounding. Within DAML-
S the abstract message is specified by the information used in the input
and output of processes in the Process Model, this information is mapped
through DAML-S Grounding to WSDL abstrct messages which can then
tranformed into concrete messages used in the interaction between web ser-
vices.

1.3 BPEL4WS

BPEL4WS is essentially a process modeling language. It relates most closely
to the ServiceModel or Process Model component of DAML-S. It has been
designed to enable a would-be service composer to aggregate one or more
Web services into a (possibly non-deterministic) execution of one or more
Web services.

BPEL4WS distinguishes between abstract and executable processes. Ab-
stract process may cloak internal behavior (e.g. decision processes) as non-



deterministic junctions, while executable processes model the actual behav-
ior of the process. Abstract processes are useful for describing business
protocols, while executable processes may be compiled into invokable ser-
vices.

Aggregated services are modeled as directed graphs where the nodes are
services and the edges represent a dependency link from one service to an-
other. The runtime semantics of the links may be specified in the BPEL4WS
document. For example, the user may simulate Petri-Net behavior by stip-
ulating that a service may execute only after all its parents execute suc-
cessfully. Canonical programmatic constructs like SWITCH, WHILE and
PICK allow properties of inter-service messages to direct an execution’s path
through the graph.

For descriptions of what services do and how they work, BPEL4WS
references port types contained in WSDL documents. Transitively, then,
the expressiveness of service behavior and inputs/outputs is constrained by
XML and XML schema. A BPEL4WS document uses these descriptions to
define ”roles” within a composition that are filled by ”partners”. A service
that meets the restrictions set by a partner definition may fill that role in a
composition. The port-specific information about a partner may be set at
run time, allowing partner roles to be filled dynamically.

BPEL4WS was released along with two others specs: WS-Coordination
and WS-Transaction. WS-Coordination [15] describes how services can
make use of pre-defined coordination contexts to subscribe to a particu-
lar role in a collaborative activity. WS-Transaction [16] provides a frame-
work for incorporating transactional semantics into coordinated activities.
In essence, WS-Transaction uses WS-Coordination to extend BPEL4WS to
provide a context for transactional agreements between services. Different
agreements may be described in an attempt to achieve consistent, desirable
behavior while respecting service autonomy.

Clearly DAML-S and BPEL4WS have broad and somewhat comple-
mentary objectives. The DAML-S ServiceProfile complements and extends
ideas in UDDI. The DAML-S ServiceGrounding connects the application
level content description of a service to communication level descriptions in
WSDL. It is the ServiceModel (aka ProcessModel) in DAML-S that relates
most closely to the business process model in BPEL4WS.

Both provide a mechanism for describing a business process model. With
so many candidate formalisms for describing a business process (e.g., XLANG,
WSFL, BPMI, BPML, now BPEL4WS, etc.) DAML-S was designed to be
agnostic with respect to a process model formalism. Rather, it aimed to pro-
vide the vocabulary and agreed upon (necessary) properties for a process



model. In so doing, we hoped to remain compatible with what we anticipated
would eventually be an agreed-upon standard for process modeling. If such
a standard did not come to pass, DAML-S would provide a way of talking
about different process models, in keeping with the approach and spirit of
NIST’s PSL [12]. Here are some of the features that distinguish/differentiate
DAML-S from BPEL4AWS.

Expressiveness:

preconditions and effects: DAML-S is augmented with preconditions
and effects. This enables encoding of side-effects of services. This
is important for Web service composition because it enables higher-
level reasoning about how services may be aggregated to achieve a
particular goal while effecting particular changes on the world.

hierarchies, taxonomy information: DAML-S classes may draw proper-
ties from inheritance and other relationships to other DAML-S classes,
thus providing for a richer representation of an individual service and
the relationships between services.

rich ”typing” of Web concepts: DAML+OIL enables the definition of
classes in terms of their property ranges, and their relationships to
other classes. E.g., we can define a class called US-FAA-flight codes
as a subclass of FAA-flight codes where the location of the airport
designated by the code is restricted to the USA. In so doing, we can
type content in terms of these classes and reason and search over them.
DAML-S also includes the full suite of XML data types.

BPEL4WS as well as DAML-S use WSDL port type information for
service descriptions. WSDL does not describe side-effects or pre-
conditions of services, and the expressiveness of service behavior and
inputs/outputs is restricted to the interaction specification.

Semantics:

The intended interpretation of the DAML-S process model can be
defined in three ways:
1. By a translation to (axiomatization in) first-order logic

2. By a translation to an operational semantics using Petri Nets
[13], and



3. By a comparable translation to subtype polymorphism [14], where
2. and 3. are very similar. (See the discussion in [14].) Note that
the semantics is defined by a translation because the semantics
of DAML+OIL (the language in which the DAML-S ontology is
described) is not sufficiently expressive to capture the intended
interpretation of a rich process model.

e Although BPEL4WS represents the merging of XLANG and WSFL-
rooted in Pi-calculus and Petri Nets, respectively—there is currently no
evidence that BPEL4AWS is based on a formal semantics.

Automated discovery, composition, and execution:

e The DAML-S ServiceProfile and ServiceModel provide sufficient in-
formation to enable automated discovery, composition, and execution
based on well-defined descriptions of a service’s inputs, outputs, pre-
conditions, effects, and process model.

e BPEL4WS does not provide a well-defined semantics. Partners are
restricted by structured XML content contained in WSDL port type
definitions.

Fault handling, execution monitoring, and transactions:

e BPEL4WS defines a mechanism for catching and handling faults sim-
ilar to common programming languages like Java. One may also de-
fine a compensation handler to enable compensatory activities in the
event of actions that cannot be explicitly undone. DAML-S currently
does not define recovery protocols but the formalised translations of
DAML-S descriptions (as in [14] and [13]) may be extended to support
them.

e Neither BPEL4AWS or DAML-S directly support query mechanisms to
expose the state of executing processes. BPEL4WS lists this item as a
‘Future Direction’. Once again, the formalised translations of DAML-
S descriptions may be extended to support execution monitoring.

e BPEL4WS may be extended with WS-Coordination [15] and WS-
Transaction [16] to provide a context for pre-defined transactional se-
mantics.

This is a preliminary sketch of the distinctions between BPEL4AWS and
DAML-S. However, we are examining the differences between the two spec-
ifications in detail and will update our findings in [17].



1.4 E-speak

E-speak is one of the earlier service architectures, developed by Hewlett-
Packard. E-speak and UDDI have similar goals in that they both facilitate
the advertisement and discovery of services. E-speak is also comparable to
WSDL in that it supports the description of service and data types [5]. It has
a matching service to compare service request and service descriptions, which
it does primarily on the basis of input-output and service types matching.

E-speak describes services (Resources in the e-speak world) as a set of
attributes within several Vocabularies. Vocabularies are sets of attributes
common to a logical group of services. E-speak matches lookup requests
against service descriptions with respect to these attributes. Attributes
take common value types such as String, Int, Boolean and Double. There
is a base vocabulary which defines basic attributes such as Name, Type (of
value String only), Description, Keywords and Version. Currently, there is
no semantic meaning attached to any of the attributes. Any matching which
takes place is done over the service description attributes which does not
distinguish between any further subtypes. DAML-S had a much richer set
of attributes, in DAML-S terminology, the input/output parameters, effects
and additional functional attributes. In addition, dependencies between
attributes and logical constraints on them are not expressible within E-
speak.

Unlike UDDI, which was intended to be an open standard from the
beginning, e-speak scores relatively low on interoperability. It requires that
an e-speak engine be run on all participating client machines. Furthermore,
although e-speak is designed to be a full platform for Web services and
could potentially expose a execution monitoring interface, service processes
remain a black-box for the e-speak platform and consequently no execution
monitoring can be done.

1.5 ebXML

ebXML, being developed primarily by OASIS and the United Nations, ap-
proaches the problem from a workflow perspective. ebXML uses two views
to describe business interactions, a Business Operational View (BOV) and
a Functional Service View (FSV) [6] [7]. The BOV deals with the semantics
of business data transactions, which include operational conventions, agree-
ments, mutual obligations and the like between businesses. The FSV deals
with the supporting services: their capabilities, interfaces and protocols. Al-
though ebXML does not concentrate on only Web services, the focus of this



view is essentially the same as that of the current DAML-S effort.

It has the concept of a Collaboration Protocol Profile (CPP) which al-

lows a Trading Partner to express their supported Business Processes and
Business Service Interface requirements [such that they are understood] by
other ebXML compliant Trading Partners, in effect a specification of the ser-
vices offered by the Trading Partner. A Business Process is a set of business
document exchanges between the Trading Partners. CPPs contain industry
classification, contact information, supported Business Processes, interface
requirements etc. They are registered within an ebXML registry, in which
there is discovery of other Trading Partners and the Business Processes they
support. In this respect, UDDI has some similarities with ebXML. However,
ebXML s scope does not extend to the manner in which the business doc-
uments are specified. This is left to the Trading Partners to agree upon a
priori by the creation of a Collaboration Protocol Agreement.

In conclusion, the kind of functionality, interoperability and dynamic

matchmaking capabilities provided by DAML-S is only partially supported,
as the standards are currently positioned, by WSDL and UDDI. UDDI may
become more sophisticated as it incorporates e-speak-like functionalities,
but it will not allow automatic service interoperability until it incorporates
the information provided by DAML-S.

References

[1]

[2]

3]

[4]

[5]

The UDDI Technical White Paper
http://www.uddi.org/pubs/Iru_UDDI_Technical_White_Paper.pdf

Massimo Paolucci, Takahiro Kawamura, Terry R. Payne, Katia Sycara,;
"Importing the Semantic Web in UDDI” Forthcoming in Proceedings
of Web Services, E-business and Semantic Web Workshop

http://www-2.cs.cmu.edu/"softagents/publications.html

Web Services Description Language (WSDL) 1.1
http://www.w3.org/TR/wsdl

Uche Ogbuji, Using WSDL in SOAP applications: An introduction to
WSDL for SOAP programmers:

http://www-106.1ibm.com/developerworks/library/ws-soap/?dwzone=us

E-Speak Architectural Specification Release A.0
http://www.e-speak.hp.com/media/a0/architectureal.pdf



[6] The ebXML website. http://www.ebxml.org/

[7] David Webber and Anthony Dutton, Understanding ebXML, UDDI
and XML/edi.

http://wuw.xml.org/feature_articles/2000_1107_miller.shtml

[8] DAML Services
http://www.daml.org/services/

[9] Business Process Execution Language for Web Services, Version 1.0

http://www-106.1ibm.com/developerworks/webservices/library/ws-bpel/

[10] Tim Berners-Lee, James Hendler and Ora Lassila. The Semantic Web

http://www.sciam.com/article.cfm?articleID=00048144-
10D2-1C70-84A9809EC588EF21

[11] The DAML+OIL Language (March 2001)
http://www.daml.org/2001/03/daml+oil-index

[12] The Process Specification Language
http://ats.nist.gov/psl/

[13] Narayanan, S. and Mcllraith, S. ”Simulation, Verification and Auto-
mated Composition of Web Services”. To appear in the Proceedings of
the Eleventh International World Wide Web Conference (WWW-11),
May, 2002.

http://www.daml.org/services/nar-mci-wwwll.ps

[14] Anupriya Ankolekar, Frank Huch, and Katia Sycara. ”Concurrent Ex-
ecution Semantics of DAML-S with Subtypes”. LNCS 2342, p. 318 ff.

http://www.daml.org/services/ISWC2002-ExSem.pdf
[15] Web Services Coordination (WS-Coordination) 9 August 2002
http://www-106.1ibm.com/developerworks/webservices/library/ws-coor/
[16] Web Services Transaction (WS-Transaction) 9 August 2002

http://www-106.1ibm.com/developerworks/webservices/library/ws-transpec/

[17] Comparison of DAML-S and BPEL4WS (initial draft)
http://www.ksl.stanford.edu/projects/DAML/Webservices/DAMLS-BPEL.html

10



