
1 Related Work

Industry efforts to develop standards for electronic commerce, and in particular for the description
of Web-based services currently revolve around UDDI, WSDL, and ebXML. There have also been
company-specific initiatives to define architectures for e-commerce, most notably E-speak from
Hewlett-Packard.

Nevertheless, we believe that DAML-S provides functionality that the other efforts do not.
In comparison to the DAML-S characterization of services, the industry standards mostly focus
on presenting a ServiceProfile and a ServiceGrounding of services (to use DAML-S terminol-
ogy). ServiceGroundings are supported by all the standards. However, they are limited with
respect to DAML-S profiles in that they cannot express logical statements, e.g. preconditions
and postconditions, or rules to describe dependencies between the profile elements. Input and
output types are supported to varying extents. Furthermore, DAML-S supports the description
of certain functional attributes of services, which are not covered in the other standards, such as
qualityGuarantees and serviceType.

With respect to the four tasks of automatic Web service discovery, automatic Web service
invocation, automatic Web service interoperation and composition, and automatic Web service
execution monitoring that DAML-S is meant to support, the standards primarily enable the first
and the second tasks to a certain extent. These standards are still evolving and it is unclear
at present to what extent composition will be addressed. At the moment, the standards do not
consider the ServiceModel of a service and thus, they also do not support execution monitoring,
as defined in this paper.

In the following sections, we look in greater detail at each of these technologies in turn and
compare them to DAML-S.

1.1 UDDI

UDDI(Universal Description, Discovery and Integration) is an initiative begun by Microsoft, IBM
and Ariba to develop a standard for an online registry, to enable the publishing and dynamic
discovery of Web services offered by businesses [1]. UDDI allows programmers and other repre-
sentatives of a business to locate potential business partners and form business relationships on
the basis of the services they provide. It thus facilitates the creation of new business relationships.

The primary target of UDDI seems to be integration and at least semi-automation of business
transactions in B2B e-commerce applications. It provides a registry for registering businesses
and the services they offer. These are described according to an XML schema defined by the
UDDI specification. A Web service provider registers its advertisements along with keywords for
categorisation. A Web services user retrieves advertisements out of the registry based on keyword
search. The UDDI search mechanism relies on pre-defined categorisation through keywords and
does not refer to the semantic content of the advertisements. The registry is supposed to function
in a fashion similar to white pages or yellow pages, where businesses can be looked up by name or
by a standard service taxonomy as is already used within the industry. UDDI attempts to cover
all kinds of services offered by businesses, including those that are offered by phone or e-mail and
similar means; in principle, DAML-S could do this, but it has not been our focus.

Technically speaking, each business description in UDDI consists of a businessEntity element,
akin to a White Pages element describing the contact information for a business. A businessEn-
tity describes a business by name, a key value, categorisation, services offered (businessService
elements) and contact information for the business. A businessService element describes a service
using a name, key value, categorisation and multiple bindingTemplate elements. This can be

1



considered to be analogous to a Yellow Pages element that categorises a business. A bindingTem-
plate element in turn describes the kind of access the service requires (phone, mailto, http, ftp,
fax etc.), key values and tModelInstances. tModelInstances are used to describe the protocols,
interchange formats that the service comprehends, that is, the technical information required to
access the service. It is also used to describe the “namespaces” for the classifications used in
categorisation. Many of the elements are optional, including most of the ones that would be
required for matchmaking or service composition purposes.

UDDI aims to facilitate the discovery of potential business partners and the discovery of
services and their groundings that are offered by known business partners. This may or may
not be done automatically. When this discovery occurs, programmers affiliated with the business
partners program their own systems to interact with the services discovered. This is also the model
generally followed by ebXML. DAML-S enables more flexible discovery by allowing searches to
take place on almost any attribute of the ServiceProfile. UDDI, in contrast, allows technical
searches only on tModelKeys, references to tModelInstances, which represent full specifications
of a kind of service.

UDDI, of itself, does not support semantic descriptions of services. Thus, depending on the
functionality offered by the content language, although agents can search the UDDI registry and
retrieve service descriptions, a human needs to be involved in the loop to make sense of the
descriptions, and to program the access interface.

UDDI does not provide or specify content languages for advertisement so far. Although WSDL
is most closely associated with UDDI as a content language, the specification refers to ebXML
and XML/edi also as potential candidates. Content languages could be a possible bridge between
UDDI and DAML-S. DAML-S is also a suitable candidate for a content language and in this
sense, DAML-S and UDDI are complementary. A higher-level service or standard defined on top
of UDDI could take advantage of the additional richness of content DAML-S has to offer within
the UDDI registries.

1.2 WSDL

WSDL (Web Services Description Language) is an XML format, closely associated with UDDI
as the language for describing interfaces to business services registered with a UDDI database.
It is thus closer to DAML-S in terms of functionality than UDDI. Like DAML-S, it attempts to
separate services, defined in abstract terms, from the concrete data formats and protocols used for
implementation, and defines bindings between the abstract description and its specific realization
[2]. However, the abstraction of services is at a lower level than in DAML-S.

Services are defined as endpoints, which are essentially sets of ports, that is network addresses
associated with certain protocols and data format specifications. The abstract nature of a service
arises from the abstract nature of the messages and operations mapped to a port and define its
port type. Port types are reusable and can be bound to multiple ports [3]. Operations are of four
basic kinds in WSDL: a one-way, a (two-way) request-response, a (two-way) solicit-response and
a (one-way) notification message. A message itself is defined abstractly as a request, a response
or even a parameter of a request or response and its type, as defined in a type system like XSD.
They can be broken into parts to define the logical break-down of a message.

Messages and operations are defined abstractly and are thus reusable and extensible and cor-
respond roughly to the DAML-S ServiceProfile. The service element itself incorporates both a
ServiceProfile and ServiceGrounding information. WSDL service descriptions are not as expres-
sive as DAML-S profiles. Preconditions, postconditions and effects of service access cannot be
expressed within WSDL.

2



Like UDDI, WSDL does not support semantic description of services. WSDL focuses on the
grounding of services and although it has a concept of input and output types as defined by XSD,
it does not support the definition of logical constraints between its input and output parameters.
Thus its support for discovery and invocation of services is less versatile than that of DAML-S.

1.3 E-speak

Hewlett-Packard is collaborating with the UDDI consortium to bring E-speak technology to the
UDDI standard. It is thus fairly likely that E-speak will be subsumed by UDDI. E-speak and
UDDI have similar goals in that they both facilitate the advertisement and discovery of services.
E-speak is also comparable to WSDL in that it supports the description of service and data types
[4]. It has a matching service to compare service request and service descriptions, which it does
primarily on the basis of input-output and service types matching.

E-speak describes services (Resources in the e-speak world) as a set of attributes within
several Vocabularies. Vocabularies are sets of attributes common to a logical group of services.
E-speak matches lookup requests against service descriptions with respect to these attributes.
Attributes take common value types such as String, Int, Boolean and Double. There is a base
vocabulary which defines basic attributes such as Name, Type (of value String only), Description,
Keywords and Version. Currently, there is no semantic meaning attached to any of the attributes.
Any matching which takes place is done over the service description attributes which does not
distinguish between any further subtypes. DAML-S had a much richer set of attributes, in
DAML-S terminology, the input/output parameters, effects and additional functional attributes.
In addition, dependencies between attributes and logical constraints on them are not expressible
within E-speak.

Unlike UDDI, which was intended to be an open standard from the beginning, e-speak scores
relatively low on interoperability. It requires that an e-speak engine be run on all participating
client machines. Furthermore, although e-speak is designed to be a full platform for Web services
and could potentially expose a execution monitoring interface, service processes remain a black-
box for the e-speak platform and consequently no execution monitoring can be done.

1.4 ebXML

ebXML, being developed primarily by OASIS and the United Nations, approaches the problem
from a workflow perspective. ebXML uses two views to describe business interactions, a Business
Operational View (BOV) and a Functional Service View (FSV) [5] [6]. The BOV deals with
the semantics of business data transactions, which include operational conventions, agreements,
mutual obligations and the like between businesses. The FSV deals with the supporting services:
their capabilities, interfaces and protocols. Although ebXML does not concentrate on only Web
services, the focus of this view is essentially the same as that of the current DAML-S effort.

It has the concept of a Collaboration Protocol Profile (CPP) “which allows a Trading Partner
to express their supported Business Processes and Business Service Interface requirements [such
that they are understood] by other ebXML compliant Trading Partners”, in effect a specification
of the services offered by the Trading Partner. A Business Process is a set of business document
exchanges between the Trading Partners. CPPs contain industry classification, contact informa-
tion, supported Business Processes, interface requirements etc. They are registered within an
ebXML registry, in which there is discovery of other Trading Partners and the Business Processes
they support. In this respect, UDDI has some similarities with ebXML. However, ebXML’s scope
does not extend to the manner in which the business documents are specified. This is left to the

3



Trading Partners to agree upon a priori by the creation of a Collaboration Protocol Agreement.
In conclusion, the kind of functionality, interoperability and dynamic matchmaking capabili-

ties provided by DAML-S is only partially supported, as the standards are currently positioned, by
WSDL and UDDI. UDDI may become more sophisticated as it incorporates e-speak-like function-
alities, but it will not allow automatic service interoperability until it incorporates the information
provided by DAML-S.

References

[1] The UDDI Technical White Paper

http://www.uddi.org/pubs/Iru_UDDI_Technical_White_Paper.pdf

[2] Web Services Description Language (WSDL) 1.1

http://www.w3.org/TR/wsdl

[3] Uche Ogbuji, Using WSDL in SOAP applications: An introduction to WSDL for SOAP
programmers:

http://www-106.ibm.com/developerworks/library/ws-soap/?dwzone=ws

[4] E-Speak Architectural Specification Release A.0

http://www.e-speak.hp.com/media/a0/architecturea0.pdf

[5] The ebXML website.

http://www.ebxml.org/

[6] David Webber and Anthony Dutton, Understanding ebXML, UDDI and XML/edi.

http://www.xml.org/feature_articles/2000_1107_miller.shtml

4


