
DAML-S: Semantic Markup For Web Services

The DAML Services Coalition
�

Abstract

The Semantic Web should enable greater access not only to content but also to services
on the Web. Users and software agents should be able to discover, invoke, compose, and
monitor Web resources o�ering particular services and having particular properties. As part
of the DARPA Agent Markup Language program, we have begun to develop an ontology of
services, called DAML-S, that will make these functionalities possible. In this white paper we
describe the overall structure of the ontology, the service pro�le for advertising services, and
the process model for the detailed description of the operation of services.

This white paper accompanies DAML-S version 0.6, which is available at
http://www.daml.org/services/daml-s/2001/10/.

1 Introduction: Services on the Semantic Web

E�orts toward the creation of the Semantic Web are gaining momentum [2]. Soon it will be

possible to access Web resources by content rather than just by keywords. A signi�cant force in

this movement is the development of DAML|the DARPA Agent Markup Language [7]. DAML

enables the creation of ontologies for any domain and the instantiation of these ontologies in the

description of speci�c Web sites.

Among the most important Web resources are those that provide services. By \service" we

mean Web sites that do not merely provide static information but allow one to e�ect some action

or change in the world, such as the sale of a product or the control of a physical device. The

Semantic Web should enable users to locate, select, employ, compose, and monitor Web-based

services automatically.

To make use of a Web service, a software agent needs a computer-interpretable description

of the service, and the means by which it is accessed. An important goal for DAML, then, is to

establish a framework within which these descriptions are made and shared. Web sites should be

able to employ a set of basic classes and properties for declaring and describing services, and the

ontology structuring mechanisms of DAML provide the appropriate framework within which to

do this.

This paper describes a collaborative e�ort by BBN Technologies, Carnegie Mellon University,

Nokia, Stanford University, SRI International, and Yale University, to de�ne just such an ontology.

We call this language DAML-S. We �rst motivate our e�ort with some sample tasks. In the central

part of the paper we describe the upper ontology for services that we have developed, including

�This work is the collaborative e�ort of projects at BBN Technologies, Carnegie-Mellon University, Nokia,

Stanford University, SRI International, and Yale University. Mark Burstein participated for BBN Technologies.

The participants for Carnegie-Mellon University are Anupriya Ankolenkar, Massimo Paolucci, Terry Payne, and

Katia Sycara. Ora Lassila participated for Nokia. The participants for Stanford University are Sheila McIlraith,

Tran Cao Son, and Honglei Zeng. The participants for SRI International are Jerry Hobbs, David Martin, and Srini
Narayanan. Drew McDermott participated for Yale.

1

the ontologies for pro�les, processes, and time, and thoughts toward a future ontology of process

control. We then compare DAML-S with a number of recent industrial e�orts to standardize a

markup language for services.

2 Some Motivating Tasks

Services can be simple or primitive in the sense that they invoke only a single Web-accessible

computer program, sensor, or device that does not rely upon another Web service, and there is

no ongoing interaction between the user and the service, beyond a simple response. For example, a

service that returns a postal code or the longitude and latitude when given an address would be in

this category. Alternately, services can be complex, composed of multiple primitive services, often

requiring an interaction or conversation between the user and the services, so that the user can

make choices and provide information conditionally. One's interaction with www.amazon.com to

buy a book is like this; the user searches for books by various criteria, perhaps reads reviews, may

or may not decide to buy, and gives credit card and mailing information. DAML-S is meant to

support both categories of services, but complex services have provided the primary motivations

for the features of the language. The following four sample tasks will give the reader an idea of

the kinds of tasks we expect DAML-S to enable [10, 11].

1. Automatic Web service discovery. Automatic Web service discovery involves the auto-

matic location of Web services that provide a particular service and that adhere to requested

constraints. For example, the user may want to �nd a service that sells airline tickets be-

tween two given cities and accepts a particular credit card. Currently, this task must be

performed by a human who might use a search engine to �nd a service, read the Web

page, and execute the service manually, to determine if it satis�es the constraints. With

DAML-S markup of services, the information necessary for Web service discovery could be

speci�ed as computer-interpretable semantic markup at the service Web sites, and a service

registry or ontology-enhanced search engine could be used to locate the services automat-

ically. Alternatively, a server could proactively advertise itself in DAML-S with a service

registry, also called middle agent [3, 18, 9], so that requesters can �nd it when they query

the registry. Thus, DAML-S must provide declarative advertisements of service properties

and capabilities that can be used for automatic service discovery.

2. Automatic Web service invocation. Automatic Web service invocation involves the

automatic execution of an identi�ed Web service by a computer program or agent. For

example, the user could request the purchase of an airline ticket from a particular site on

a particular
ight. Currently, a user must go to the Web site o�ering that service, �ll out

a form, and click on a button to execute the service. Alternately the user might send an

HTTP request directly to the service with the appropriate parameters in HTML. In either

case, a human in the loop is necessary. Execution of a Web service can be thought of

as a collection of function calls. DAML-S markup of Web services provides a declarative,

computer-interpretable API for executing these function calls. A software agent should be

able to interpret the markup to understand what input is necessary to the service call, what

information will be returned, and how to execute the service automatically. Thus, DAML-S

should provide declarative APIs for Web services that are necessary for automated Web

service execution.

3. Automatic Web service composition and interoperation. This task involves the

automatic selection, composition and interoperation of Web services to perform some task,

given a high-level description of an objective. For example, the user may want to make all

the travel arrangements for a trip to a conference. Currently, the user must select the Web

services, specify the composition manually, and make sure that any software needed for the

interoperation is custom-created. With DAML-S markup of Web services, the information

necessary to select and compose services will be encoded at the service Web sites. Software

can be written to manipulate these representations, together with a speci�cation of the

objectives of the task, to achieve the task automatically. Thus, DAML-S must provide

declarative speci�cations of the prerequisites and consequences of individual service use

that are necessary for automatic service composition and interoperation.

4. Automatic Web service execution monitoring. Individual services and, even more,

compositions of services, will often require some time to execute completely. Users may

want to know during this period what the status of their request is, or their plans may

have changed requiring alterations in the actions the software agent takes. For example,

users may want to make sure their hotel reservation has already been made. For these

purposes, it would be good to have the ability to �nd out where in the process the request

is and whether any unanticipated glitches have appeared. Thus, DAML-S should provide

descriptors for the execution of services. This part of DAML-S is a goal of ours, but it has

not yet been de�ned.

Any Web-accessible program/sensor/device that is declared as a service will be regarded as

a service. DAML-S does not preclude declaring simple, static Web pages to be services. But

our primary motivation in de�ning DAML-S has been to support more complex tasks like those

described above.

3 An Upper Ontology for Services

The class Service stands at the top of a taxonomy of services, and its properties are the properties

normally associated with all kinds of services. The upper ontology for services is silent as to what

the particular subclasses of Service should be, or even the conceptual basis for structuring

this taxonomy, but it is expected that the taxonomy will be structured according to functional

and domain di�erences and market needs. For example, one might imagine a broad subclass,

B2C-transaction, which would encompass services for purchasing items from retail Web sites,

tracking purchase status, establishing and maintaining accounts with the sites, and so on.

Our structuring of the ontology of services is motivated by the need to provide three essential

types of knowledge about a service (shown in �gure 1), each characterized by the question it

answers:

� What does the service require of the user(s), or other agents, and provide for them? The

answer to this question is given in the \pro�le1." Thus, the class Service presents a

ServiceProfile

� How does it work? The answer to this question is given in the \model." Thus, the class

Service is describedBy a ServiceModel

� How is it used? The answer to this question is given in the \grounding." Thus, the class

Service supports a ServiceGrounding

1A service pro�le has also been called service capability advertisement [16].

Service

ServiceModel

provides

supportspresents

DescribedBy
ServiceProfile ServiceGrounding

Resource

:KDW�WKH

VHUYLFH�GRHV

+RZ�LW�ZRUNV

+RZ�WR

DFFHVV�LW

Figure 1: Top level of the service ontology

The properties presents, describedBy, and supports are properties of Service. The classes

ServiceProfile, ServiceModel, and ServiceGrounding are the respective ranges of those

properties. We expect that each descendant class of Service, such as B2C-transaction, will

present a descendant class of ServiceProfile, be describedBy a descendant class of Service-

Model, and support a descendant class of ServiceGrounding. The details of pro�les, models,

and groundings may vary widely from one type of service to another|that is, from one descen-

dant class of Service to another. But each of these three classes provides an essential type of

information about the service, as characterized in the rest of the paper.

The service pro�le tells \what the service does"; that is, it gives the type of information

needed by a service-seeking agent to determine whether the service meets its needs (typically

such things as input and output types, preconditions and postconditions, and binding patterns).

In future versions, we will use logical rules or their equivalent in such a speci�cation for expressing

interactions among parameters. For instance, a rule might say that if a particular input argument

is bound in a certain way, certain other input arguments may not be needed, or may be provided

by the service itself. As DAML and DAML-S and their applications evolve, logical rules and

inferential approaches enabled by them are likely to play an increasingly important role in models

and groundings, as well as in pro�les. See [4] for additional examples.

The service model tells \how the service works"; that is, it describes what happens when

the service is carried out. For non-trivial services (those composed of several steps over time),

this description may be used by a service-seeking agent in at least four di�erent ways: (1) to

perform a more in-depth analysis of whether the service meets its needs; (2) to compose service

descriptions from multiple services to perform a speci�c task; (3) during the course of the service

enactment, to coordinate the activities of the di�erent participants; (4) to monitor the execution

of the service. For non-trivial services, the �rst two tasks require a model of action and process,

the last two involve, in addition, an execution model.

A service grounding (\grounding" for short) speci�es the details of how an agent can access a

service. Typically a grounding will specify a communications protocol (e.g., RPC, HTTP-FORM,

CORBA IDL, SOAP, Java RMI, OAA ACL [9]), and service-speci�c details such as port numbers

used in contacting the service. In addition, the grounding must specify, for each abstract type

speci�ed in the ServiceModel, an unambiguous way of exchanging data elements of that type

with the service (that is, the marshaling/serialization techniques employed). The likelihood is

that a relatively small set of groundings will come to be widely used in conjunction with DAML

services. If this turns out to be the case, groundings will likely be speci�ed at various well-known

URIs.

Generally speaking, the ServiceProfile provides the information needed for an agent to dis-

cover a service. Taken together, the ServiceModel and ServiceGrounding objects associated

with a service provide enough information for an agent to make use of a service.

The upper ontology for services deliberately does not specify any cardinalities for the prop-

erties presents, describedBy, and supports. Although, in principle, a service needs all three

properties to be fully characterized, it is possible to imagine situations in which a partial char-

acterization could be useful. Hence, there is no speci�cation of a minimum cardinality. Further,

it should certainly be possible for a service to o�er multiple pro�les, multiple models, and/or

multiple groundings. Hence, there is no speci�cation of a maximum cardinality.

In general, there need not exist a one-to-one correspondence between pro�les, models, and/or

groundings. The only constraint among these three characterizations that might appropriately be

expressed at the upper level ontology is that for each model, there must be at least one supporting

grounding.

In the following two sections we discuss the service pro�le and the service model in greater

detail (Service groundings are not discussed further, but will be covered in greater depth in a

subsequent publication.)

4 Service Pro�les

In a market place of web services, we can broadly identify three classes of entities: service

providers, service requesters and infrastructure components, most likely registries, that map the

needs of the requesters with the o�ers of the providers [17, 18]. For instance, a requester may

need a news service that reports stock quotes with no delay with respect to the market. The role

of the registries is to match the request with the o�ers of service providers to identify which of

them is the best match. Within this framework, service pro�les provide a way to describe the

services o�ered by the providers, and the services needed by the requesters.

A service pro�le contains three types of information: a human readable description of the

service and its provider; a speci�cation of the functionalities that are provided by the service; and

a host of attributes which provide additional information and requirements such as quality guar-

antees, expected response time and geographic constraints, these attributes and assist reasoning

about several services with similar capabilities. The functionalities of the service are represented

by the inputs and preconditions required by the service to the outputs and e�ects produced. For

example, a news reporting service would advertise itself as a service that, given a date, will return

the news reported on that date.

A service pro�le describes who provides the service, the expected quality of the service and

the transformation produced by the service in terms of what it expects to run correctly, and what

results it produces. Speci�cally, the service pro�le speci�es the preconditions that have to be

satis�ed to use the service e�ectively, and the inputs that the service expects; furthermore, the

service pro�le speci�es the expected e�ects that result from the execution of the service and the

output information returned. The input, outputs, precondition and e�ects (hereafter IOPEs) of

the pro�le are correspond to the IOPEs of the process model that it advertises. Currently, due

to limitations of the DAML language, there is no logical relationship between the service pro�le

IOPEs and the actual IOPEs of the corresponding process model. Therefore, at least in theory,

the two descriptions may be inconsistent. Nevertheless, the intended use of these descriptions is

to correctly characterize the key parameters of the process model so that potential clients can

properly �nd o�ered services that meet their needs. A violation of the IOPEs intended use results

in a misrepresentation of the service in the registries, therefore service cannot be selected when

requested, or it is selected to satisfy a request that it cannot satisfy, resulting in both cases in a

loss for the misrepresented service.

Implicitly, the service pro�les specify the intended purpose of the service, because they specify

only those functionalities that are publicly provided. A book-selling service may involve two

di�erent functionalities: it allows other services to browse its site to �nd books of interest, and

eventually to buy the books they found. The book-seller has the choice of advertising just the

book-buying service or both the browsing functionality and the buying functionality. In the latter

case the service makes public that it can provide browsing services, and it allows everybody to

browse its registry without buying a book. In contrast, by advertising only the book-selling

functionality, but not the browsing, the agent discourages browsing by requesters that do not

intend to buy. The decision as to which functionalities to advertise determines how the service

will be used: a requester that intends to browse but not to buy would select a service that

advertises both buying and browsing capabilities, but not one that advertises buying only.

In the description so far, we tacitly assumed a registry model in which service capabilities

are advertised, and then matched against requests of service. While this is the model followed

by web registries such as UDDI, other form of registries are also possible. For example, when

the demand of a service is higher then the supply, then advertising needs for service is more

e�cient then advertising o�ered services since a provider can select the next request as soon as

it is free. Indeed the type of registries may vary widely and as many as 28 di�erent types have

been identi�ed [18, 3]. By using a declarative representation of web services, the service pro�le is

not committed to any form of registry, but it can be used in all of them. Since the service pro�le

represents both o�ers of services and needs of services, then it can be used in a reverse registry

that records needs and queries on o�ers. Indeed, the Service Pro�le can be used in all 28 types

of registries.

Depending on the discovery mechanism followed, the Pro�le class may need to be modi�ed to

satisfy accommodate information. This is possible in DAML by de�ning specialized subclasses of

Pro�le. For example, when passive registration is used so that services do not advertise directly,

rather wait for a web crawler to �nd what they o�er or what they need, the distinction between

a request of service and an o�er of service is facilitated by the de�nition of subclasses of pro�le,

as below:

<rdfs:Class rdf:ID="OfferedService">

<rdfs:label>OfferedService</rdfs:label>

<rdfs:subClassOf rdf:resource="&service;#ServiceProfile" />

</rdfs:Class>

Any instance of the class "O�eredService" would be understood as an advertisement of a new

service. A similar class for "NeededServices" would instead be used to advertise needs of services.

4.1 Pro�le Properties

In the following we describe in detail the �elds of the pro�le model; we classify them into three

broad categories: the �rst one, that we name Provenance and Description, describes the provider

of the service, an natural language description and additional information that allow the location

of the service.

4.1.1 Provenance and Description

Information about the service, such as its provenance, a text summary etc is provided within the

pro�le. This is primarily for use by human users, although these properties are considered when

locating requested services.

serviceName The Service Name refers to the name of the service that is being o�ered. It can

be used as an identi�er of the service.

intendedPurpose The property IntendedPurpose provides information on what constitutes suc-

cessful accomplishment of a service execution.

textDescription The property textDescription provides a brief description of the service. It

summarizes what the service o�ers, or to describe what service is requested.

providedBy The property providedBy links the service pro�le to an Actor who provides the

service.

requestedBy The property providedBy links the service pro�le to an Actor who requests the

service.

The class Actor provides information on the provider or the requester of the service; speci�-

cally, it provides the following information.

name The name property of Actor speci�es the name of the actor. This could be either a person

name or a company name.

phone A phone number that can be used to gather information on the service

fax A fax number that can be used to gather information on the service

email An e-mail address that can be used to gather information on the service

physicalAddress A physical address that can be used to gather information on the service

webURL A URL of the product or company website

4.1.2 Functionality Description

An essential component of the pro�le is the speci�cation of what the service provides and the

speci�cation of the conditions that have to be satis�ed for a successful result. In addition, the

pro�le speci�es what conditions result from the service including the expected and unexpected

results of the service activity.

The service is represented by input and output properties of the pro�le. The input property

speci�es the information that the service requires to proceed with the computation. For example,

a book-selling service could require the credit-card number and bibliographical information of

the book to sell. The outputs specify what is the result of the operation of the service. For the

book-selling agent the output could be a receipt that acknowledges the sale.

<rdf:Property rdf:ID="input">

<rdfs:comment>

Property describing the inputs of a service in the Service Profile

</rdfs:comment>

<rdfs:domain rdf:resource="#ServiceProfile"/>

<rdfs:subPropertyOf rdf:resource="#ParameterDescription"/>

</rdf:Property>

While inputs and outputs represent the service, they are not the only things a�ected by the

operations of the service. For example, to complete the sale the book-selling service requires

that the credit card is valid and not overdrawn or expired. In addition, the result of the sale

is not only that the buyer owns the book (as speci�ed by the outputs), but that the book is

physically transferred from the the warehouse of the seller to the house of the buyer. These

conditions are speci�ed by precondition and e�ect properties of the pro�le. Precondition present

a logical condition that should be satis�ed prior to the service being requested. These conditions

should have associated explicit e�ects that may occur as a result of the service being performed.

E�ects are events that are caused by the successful execution of a service. The representation of

preconditions and e�ects depends on the representation of rules in the DAML language. Currently,

there is a working group that is trying to formulate rules in DAML, but no proposal has been

put forward. For this reason, the �elds precondition and e�ect are mapped to thing meaning that

anything is possible, but this will have to be modi�ed in future releases of the pro�le.

<rdf:Property rdf:ID="precondition">

<rdfs:domain rdf:resource="#ServiceProfile"/>

<rdfs:range rdf:resource="#ConditionDescription"/>

</rdf:Property>

Finally, the Pro�le allows the speci�cation of what domainResources are a�ected by the use of

the service. These domain resources may include computational resources such as bandwidth or

disk space as well as more material resources consumed when the service controls some machinery.

This type of resource may include fuel, or materials modi�ed by the machine.

The properties of Service Pro�les are described in detail below.

input The property input speci�es one of the inputs of the service. It takes as value an instance

of ParameterDescription (see below) that speci�es an id of the input, a value and a reference

to the corresponding input in the process model.

output The property output speci�es one of the outputs of the service. It takes as value an

instance of ParameterDescription (see below) that speci�es an id of the output, a value and

a reference to the corresponding output in the process model.

precondition The property precondition speci�es one of the preconditions of the service. It

takes as value an instance of ConditionDescription (see below) that speci�es an id of the

precondition, a value and a reference to the corresponding precondition in the process model.

e�ect The property e�ect speci�es one of the e�ects of the service. It takes as value an instance

of ConditionDescription (see below) that speci�es an id of the e�ect, a value and a reference

to the corresponding e�ect in the process model.

domainResource DomainResource(s) - not to be confused with RDF resources, or domain

restrictions - speci�es resources that are necessary for the task to be executed. No range

restrictions are placed on them at present (as with those used by the process model). Speci�c

service descriptions will specialize this property by restricting the range appropriately using

subPropertyOf.

The class ParameterDescription is used to provide values to inputs and outputs. It collects

in one class the name of the input or output that can be used as an identi�er, their value and a

reference to the corresponding input or output in the process model.

parameterName The property ParameterName provides the name of the input or output, which

could be just a literal, or perhaps the URI of the process parameter (a property)

restrictedTo The property restrictedTo provides a restriction on the values of the input or

output.

refersTo The property restrictedTo provides a reference to the input or output in the process

model.

The class ConditionDescription is used to provide a condition to preconditions and e�ects.

It collects in one class the name of a precondition or an e�ect that can be used as an identi�er,

its value and a reference to the corresponding precondition or e�ect in the process model.

conditionName The property conditionName provides the name of the precondition or e�ect ,

which could be just a literal, or perhaps the URI of the process parameter (a property)

statement The property statement provides room for a logical statement that speci�es the

precondition or the e�ect. At the present time, the DAML language does not provide any

way to express such constraints therefore the value of statement is a daml:Thing (anything

goes). This will have to change in future releases as soon as a DAML rule language will be

speci�ed.

refersTo The property restrictedTo provides a reference to the precondition or e�ect in the

process model.

4.1.3 Functional Attributes

In the previous section we introduced the functional description of services, yet there are other

aspects of services that the users should be aware of. Whilst a service may be accessed from

anywhere on the Internet, it may only be applicable to a speci�c audience. For instance, although

it is possible to order food for delivery from a Pittsburgh-based restaurant website in general, one

cannot reasonably expect to do this from California. Functional attributes address the problem

that there are other properties that can be used to describe a service other than a functional

process. These properties are described below.

geographicRadius The geographic radius refers to the geographic scope of the service. This

may be at the global or national scale (e.g. for e-commerce) or at a local scale (eg pizza

delivery).

degreeOfQuality This property provide quali�cations about the service. For example, the

following two sub-properties are examples of di�erent degrees of quality, and could be de�ned

within some additional ontology.

serviceParameter An expandable list of properties that may accompany a pro�le description.

communicationThru This property provides a high-level summary of how a service may com-

municate, such as what agent communication language (ACL) is used (eg FIPA, KQML,

SOAP etc). This summarizes the descriptions provided by the service grounding and are

used when matching services; but is not intended to replace the detail provided by the

service grounding.

serviceType The service type refers to a high level classi�cation of the service, for example

B2B, B2C etc.

serviceCategory The service category refers to an ontology of services that may be on o�er.

High level services could include Products as well as Problem Solving Capabilities, Com-

mercial Services, Information and so on.

qualityGuarentees These are guarantees that the service promises to deliver, such as guaran-

teeing to provide the lowest possible interest rate, or a response within 3 minutes, etc.

qualityRating The quality rating property represents an expandable list of rating properties

that may accompany a service pro�le. These ratings refer to industry accepted ratings,

such as the Dun and Bradstreet Rating for businesses, or the Star rating for Hotels. For

example:

<!-- Dun and Bradstreet Rating -->

<rdf:Property rdf:ID="dAndBRating">

<rdfs:subPropertyOf rdf:resource="#qualityRating" />

</rdf:Property>

As a result of the service pro�le, the user, be it a human, a program or another service, would

be able to identify what the service provides, what conditions result from the service and whether

the service is available, accessible and how it compares with other functionally equivalent services.

5 Modeling Services as Processes

To give a more detailed perspective on a service, it can be viewed as a process. We have de�ned a

particular subclass of ServiceModel, the ProcessModel, which draws upon well-established

work in a variety of �elds, such as AI planning and work
ow automation, and which we believe

will support the representational needs of a very broad array of services on the Web.

The two chief components of a process model are the process | which describes a service in

terms of its inputs, outputs, preconditions, e�ects, and, where appropriate, its component sub-

processes | and enables planning, composition and agent/service interoperation; and the process

control model, which allows agents to monitor the execution of a service request. We will refer

to the �rst part as the Process Ontology and the second as the Process Control Ontology. Only

the former has been de�ned in the current version of DAML-S, but below we brie
y describe our

intentions with regard to the latter. To support both Process and Process Control speci�cation,

we have de�ned an ontology of resources, and a simple ontology of time, both described below;

in subsequent versions these will be elaborated further.

5.1 The Process Ontology

We expect our process ontology to serve as the basis for specifying a wide array of services.

In developing the ontology, we drew from a variety of sources, including work in AI on stan-

dardizations of planning languages [6], work in programming languages and distributed sys-

tems [13, 12], emerging standards in process modeling and work
ow technology such as the

NIST's Process Speci�cation Language (PSL) [15] and the Work
ow Management Coalition ef-

fort (http://www.aiim.org/wfmc), work on modeling verb semantics and event structure [14],

previous work on action-inspired Web service markup [11], work in AI on modeling complex

actions [8], and work in agent communication languages [9, 5].

The primary kind of entity in the Process Ontology is, unsurprisingly, a \process".2 A process

can have any number of inputs, representing the information that is, under some conditions,

required for the execution of the process. It can have any number of outputs, the information

that the process provides, conditionally, after its execution. Besides inputs and outputs, another

important type of parameter speci�es the participants in a process. A variety of other parameters

may also be declared, including, for physical devices, such things as rates, forces, and knob-

settings. There can be any number of preconditions, which must all hold in order for the process

to be invoked. Finally, the process can have any number of e�ects. Outputs and e�ects can have

conditions associated with them.

More precisely, in DAML-S:

� Process

<rdfs:Class rdf:ID="Process">

<rdfs:comment> Top-level class for describing how a service works

</rdfs:comment>

</rdfs:Class>

Class Process has related properties parameter, input, (conditional) output, participant,

precondition, and (conditional) e�ect. Input, output, and participant are categorized as

subproperties of parameter. The range of each of these properties, at the upper ontology

level, is Thing; that is, left totally unrestricted. Subclasses of Process for speci�c domains

can use DAML language elements to indicate more speci�c range restrictions, as well as

cardinality restrictions for each of these properties.

The following example shows the de�nition of parameter; the other properties are de�ned
similarly:

<rdf:Property rdf:ID="parameter">

<rdfs:domain rdf:resource="#Process"/>

<rdfs:range rdf:resource=""http://www.daml.org/2001/03/daml+oil#Thing"/>

</rdf:Property>

In addition to it s action-related properties, a Process has a number of bookkeeping prop-

erties such as name(rdf:literal), address (URI), documentsRead (URI), documentsUpdated

(URI), and so on.

In DAML-S, as shown in �gure 2, we distinguish between three types of processes: atomic,

simple, and composite.

2This term was chosen over the terms \event" and \action", in part because it is more suggestive of internal

structure than \event" and because it does not necessarily presume an agent executing the process and thus is more

general than \action". Ultimately, however, the choice is arbitrary. It is modeled after computational procedures
or planning operators.

Process

ControlConstruct

Sequence RepeatUntil…

composedBy

 expand
collapse

input
 precondition

output
effect

Composite
Process

Simple
Process

realizes
realizedBy

Condition

computedInput
computedOutput
computedEffect

computedPrecondition
invocable

Profile

hasProcess
hasProfile

ProcessComponent =
Process U ControlConstruct

components

ProcessComponent =
Process U ControlConstructProcessComponent =

Process U ControlConstruct

has
Grounding

Atomic
Process

Figure 2: Top level of process ontology

� AtomicProcess

The atomic processes are directly invocable (by passing them the appropriate messages),

have no subprocesses, and execute in a single step, from the perspective of the service

requester. That is, they take input message(s) all at once, execute, and then return their

output message(s) all at once. Atomic processes must provide a grounding that enables a

service requester to construct these messages.

<daml:Class rdf:ID="AtomicProcess">

<daml:intersectionOf rdf:parseType="daml:collection">

<daml:Class rdf:about="#Process"/>

<daml:Restriction daml:minCardinality="1">

<daml:onProperty rdf:resource="#hasGrounding"/>

</daml:Restriction>

</daml:intersectionOf>

</daml:Class>

<rdf:Property rdf:ID="hasGrounding">

<rdfs:domain rdf:resource="#AtomicProcess"/>

<rdfs:range rdf:resource="grounding:Grounding"/>

</rdf:Property>

� SimpleProcess

Simple processes, on the other hand, are not invocable and are not associated with a ground-

ing, but, like atomic processes, they are conceived of as having single-step executions. Simple

processes are used as elements of abstraction; a simple process may be used either to provide

a view of (a specialized way of using) some atomic process, or a simpli�ed representation

of some composite process (for purposes of planning and reasoning). In the former case,

the simple process is realizedBy the atomic process; in the latter case, the simple process

expands to the composite process.

<daml:Class rdf:ID="SimpleProcess">

<daml:subClassOf rdf:resource="#Process"/>

</daml:Class>

<rdf:Property rdf:ID="realizedBy">

<rdfs:domain rdf:resource="#SimpleProcess"/>

<rdfs:range rdf:resource="#AtomicProcess"/>

<daml:inverseOf rdf:resource="#realizes"/>

</rdf:Property>

<rdf:Property rdf:ID="expand">

<rdfs:domain rdf:resource="#SimpleProcess"/>

<rdfs:range rdf:resource="#CompositeProcess"/>

<daml:inverseOf rdf:resource="#collapse"/>

</rdf:Property>

� CompositeProcess

Composite processes are decomposable into other (non-composite or composite) processes;

their decomposition can be speci�ed by using control constructs such as Sequence and

If-Then-Else, which are discussed below. Such a decomposition normally shows, among

other things, how the various inputs of the process are accepted by particular subprocesses,

and how its various outputs are returned by particular subprocesses.

<daml:Class rdf:ID="CompositeProcess">

<daml:intersectionOf rdf:parseType="daml:collection">

<daml:Class rdf:about="#Process"/>

<daml:Restriction daml:minCardinality="1">

<daml:onProperty rdf:resource="#composedOf"/>

</daml:Restriction>

</daml:intersectionOf>

</daml:Class>

A process can often be viewed at di�erent levels of granularity, either as a primitive, unde-

composable process or as a composite process. These are sometimes referred to as \black

box" and \glass box" views, respectively. Either perspective may be the more useful in

some given context. When a composite process is viewed as a black box, a simple process

can be used to represent this. In this case, the relationship between the simple and com-

posite is represented using the expand property, and its inverse, the collapse property. The

declaration of expand is shown above, with SimpleProcess.

A CompositeProcess must have a composedOf property by which is indicated the control

structure of the composite, using a ControlConstruct.

<rdf:Property rdf:ID="composedOf">

<rdfs:domain rdf:resource="#CompositeProcess"/>

<rdfs:range rdf:resource="#ControlConstruct"/>

</rdf:Property>

<daml:Class rdf:ID="ControlConstruct">

</daml:Class>

Each control construct, in turn, is associated with an additional property called compo-

nents to indicate the ordering and conditional execution of the subprocesses (or control

constructs) from which it is composed. For instance, the control construct, Sequence, has

a components property that ranges over a ProcessComponentList (a list whose items are

restricted to be ProcessComponents, which are either processes or control constructs).

<rdf:Property rdf:ID="components">

<rdfs:comment>

Holds the specific arrangement of subprocesses.

</rdfs:comment>

<rdfs:domain rdf:resource="#ControlConstruct"/>

</rdf:Property>

<daml:Class rdf:ID="ProcessComponent">

<rdfs:comment>

A ProcessComponent is either a Process or a ControlConstruct.

</rdfs:comment>

<daml:unionOf rdf:parseType="daml:collection">

<daml:Class rdf:about="#Process"/>

<daml:Class rdf:about="#ControlConstruct"/>

</daml:unionOf>

</daml:Class>

In the process upper ontology, we have included a minimal set of control constructs that can

be specialized to describe a variety of Web services. This minimal set consists of Sequence,

Split, Split + Join, Choice, Unordered, Condition, If-Then-Else, Iterate, Repeat-While, and

Repeat-Until.

Sequence : A list of Processes to be done in order. We use a DAML restriction to restrict

the components of a Sequence to be a List of process components | which may be

either processes (atomic, simple and/or composite) or control constructs.

<rdfs:Class rdf:ID="Sequence">

<daml:intersectionOf rdf:parseType="daml:collection">

<rdfs:Class> rdf:about="#ControlConstruct" </rdfs:Class>

<daml:Restriction>

<daml:onProperty rdf:resource="#components"/>

<daml:toClass rdf:resource="#ProcessComponentList"/>

</daml:Restriction>

<daml:intersectionOf>

</rdfs:Class>

Split : The components of a Split process are a bag of process components to be executed

concurrently. No further speci�cation about waiting or synchronization is made at this

level.

<rdfs:Class rdf:ID="Split">

<daml:intersectionOf rdf:parseType="daml:collection">

<rdfs:Class> rdf:about ="#ControlConstruct" </rdfs:Class>

<daml:Restriction>

<daml:onProperty rdf:resource="#components"/>

<daml:toClass rdf:resource="#ProcessComponentBag"/>

</daml:Restriction>

<daml:intersectionOf>

</rdfs:Class>

Split is similar to other ontologies' use of Fork, Concurrent, or Parallel. We use the

DAML sameClassAs feature to accommodate the di�erent standards for specifying

this.

Unordered : Here a bag of process components can be executed in any order. No further

constraints are speci�ed. All process components must be executed.

Split+Join : Here the process consists of concurrent execution of a bunch of process

components with barrier synchronization. With Split and Split+Join, we can de�ne

processes that have partial synchronization (e.g., split all and join some sub-bag).

Choice : Choice is a control construct with additional properties chosen and chooseFrom.

These properties can be used both for process and execution control (e.g., choose from

chooseFrom and do chosen in sequence, or choose from chooseFrom and do chosen

in parallel) as well for constructing new subclasses like \choose at least n from m",

\choose exactly n from m", \choose at most n from m" 3, and so on.

If-Then-Else : The If-Then-Else class is a control construct that has properties ifCon-

dition, then and else holding di�erent aspects of the If-Then-Else. Its semantics

is intended as \Test If-condition; if True do Then, if False do Else." (Note that the

class Condition, which is a place-holder for further work, will be de�ned as a class of

logical expressions.)

<rdf:Property rdf:ID="ifCondition">

<rdfs:comment> The if condition of an if-then-else </rdfs:comment>

<rdfs:domain rdf:resource="#If-Then-Else"/>

<rdfs:range> rdf:resource ="#Condition" </rdfs:range>

</rdf:Property>

<rdf:Property rdf:ID="then">

<rdfs:domain rdf:resource="#If-Then-Else"/>

<rdfs:range rdf:resource="#ProcessComponent"/>

</rdf:Property>

<rdf:Property rdf:ID="else">

<rdfs:domain rdf:resource="#If-Then-Else"/>

<rdfs:range rdf:resource="#ProcessComponent"/>

</rdf:Property>

Iterate : Iterate is a control construct whose nextProcessComponent property has the

same value as the current process component. Repeat is de�ned as a synonym of

3This can be obtained by restricting the size of the Process Bag that corresponds to the components of the

chosen and chooseFrom subprocesses using cardinality, min-cardinality, max-cardinality to get choose(n, m)(0 �

n � jcomponents(chooseFrom)j;0 < m � jcomponents(chosen)j).

the Iterate class. The repeat/iterate process makes no assumption about how many

iterations are made or when to initiate, terminate or resume. The initiation, ter-

mination or maintainance condition could be speci�ed with a whileCondition or an

untilCondition as below.4

Repeat-Until : The Repeat-Until class is similar to the Repeat-While class in that

it specializes the If-Then-Else class where the ifCondition is the same as the until-

Condition and di�erent from the Repeat-While class in that the else (compared to

then) property is the repeated process. Thus the process repeats till the untilCondition

becomes true.

5.2 Process Control Ontology

A process instantiation represents a complex process that is executing in the world. To monitor

and control the execution of a process, an agent needs a model to interpret process instantiations

with three characteristics:

1. It should provide the mapping rules for the various input state properties (inputs, precon-

ditions) to the corresponding output state properties.

2. It should provide a model of the temporal or state dependencies described by the sequence,

split, split+join, etc constructs.

3. It should provide representations for messages about the execution state of atomic and

composite processes su�cient to do execution monitoring. This allows an agent to keep

track of the status of executions, including successful, failed and interrupted processes, and

to respond to each appropriately.

We have not de�ned a process control ontology in the current version of DAML-S, but we

plan to in a future version.

5.3 Time

For the initial version of DAML-S we have de�ned a very simple upper ontology for time. There

are two classes of entities|Instants and Intervals. Each is a subclass of Temporal-entity.

There are three relations that may obtain between an instant and an interval, de�ned as

DAML-S properties:

1. The start-of property whose domain is the Interval class and whose range is an Instant.

2. The end-of property whose domain is the Interval class and whose range is an Instant.

3. The inside property whose domain is the Interval class and whose range is an Instant.

No assumption is made that intervals consist of instants.

There are two possible relations that may obtain between a process and one of the temporal

objects. A process may be in an at-time relation to an instant or in a during relation to an

interval. Whether a particular process is viewed as instantaneous or as occuring over an interval

is a granularity decision that may vary according to the context of use. These relations are de�ned

in DAML-S as properties of processes.

4Another possible extension is to ability to de�ne counters and use their values as termination conditions. This
could be part of an extended process control and execution monitoring ontology.

1. The at-time property: its domain is the Process class and its range is an Instant.

2. The during property: its domain is the Process class and its range is an Interval.

Viewed as intervals, processes could have properties such as startTime and endTime which are

synonymous (daml:samePropertyAs) with the Start-Of and End-Of relation that obtains between

intervals and instants.

One further relation can hold between two temporal entities|the before relation. The intended

semantics is that for an instant or interval to be before another instant or interval, there can be

no overlap or abutment between the former and the latter. In DAML-S the before property whose

domain is the Temporal-entity class and whose range is a Temporal-entity.

Di�erent communities have di�erent ways of representing the times and durations of states and

events (processes). For example, states and events can both have durations, and at least events

can be instantaneous; or events can only be instantaneous and only states can have durations.

Events that one might consider as having duration (e.g., heating water) are modeled as a state

of the system that is initiated and terminated by instantaneous events. That is, there is the

instantaneous event of the start of the heating at the start of an interval, that transitions the

system into a state in which the water is heating. The state continues until another instantaneous

event occurs|the stopping of the event at the end of the interval. These two perspectives on

events are straightforwardly interde�nable in terms of the ontology we have provided. Thus,

DAML-S supports both.

The various relations between intervals de�ned in Allen's temporal interval calculus [1] can be

de�ned in a straightforward fashion in terms of before and identity on the start and end points.

For example, two intervals meet when the end of one is identical to the start of the other. Thus, in

the near future, when DAML is augmented with the capability of de�ning logical rules, it will be

easy to incorporate the interval calculus into DAML-S. In addition, in future versions of DAML-S

we will de�ne primitives for measuring durations and for specifying clock and calendar time.

6 Resources

Services are e�ected by processes and processes generally require resources. Therefore, an ontology

of resources is an important component of an ontology of services. Our aim here is to propose an

ontology of resources stated at an abstract enough level to cover physical, temporal, computational

and other sorts of resources. Speci�c kinds of resources will of course have speci�c properties;

in this development we sketch out the principal classes of properties a resource might have. The

DAML-S �le Resource.daml contains a version of the portions of the ontology that can currently

be encoded in DAML+OIL. As DAML develops, particularly in the area of expressing rules, the

various constraints on concepts in the ontology will be written up in DAML as well.

First of all, a distinction must be pointed out. There are resource types, such as fuel. There

are resource tokens, such as the fuel in the gas tank of a particular car. And there is the quantity,

or capacity, of the resource token at any given instant, such as the �ve gallons of fuel in the

car's tank right now. We are primarily interested in the second of these notions. Resources in

this sense can, depending on resource type, be consumed, replenished, locked, and released. A

resource token, or simply resource, is what is available to an activity.

6.1 Allocation Types

Resources are allocated to activities or processes. A principal distinction in types of resources

concerns their status after the activity stops using them. We will call this the resource's Allo-

cationType. If a resource is gone after it is used, its AllocationType is ConsumableAllocation. If

not, its AllocationType is ReusableAllocation.

Examples of reusable resources are the use of a device, the availability of an agent, the use

of a region of space, and the use of bandwidth. (These could be viewed as consumable uses of

the cross product of the resource (e.g., space) with time, but they are easily decomposed into

the resource and time, where only time is consumed.) A persistent resource can be locked and

released. When it is locked, it cannot be used by another agent.

Examples of consumable resources are food, charge in a battery, fuel, money, and time. Con-

sumable resources can sometimes be replenished after they are consumed. A deadline is an indirect

constraint on the consumable resource of time.

Many resources, such as food, are perishable. We can view this case as having two processes

operating on the resource { one functional and relatively rapid, one dysfunctional and relatively

slow. Thus, eating food is functional, food spoiling is dysfunctional, and eating is rapid relative

to spoiling.

Preconditions on processes can often be viewed as the availability of some resource. Many

processes have a location precondition, or more generally, an access precondition. Permission

would be an example. In general, if a process is executed as a precondition to another process,

we can view its product (or its having been done) as a resource. Something being in the right

location for a process's execution can thus be seen as a resource.

6.2 Capacity Types

Resources generally have a precise quantitative measure of capacity at any given instant of time.

(Enthusiasm is an interesting limiting case { it is a consumable resource that can be replenished

and is required for many tasks, but it cannot be measured precisely. Attention is a similar

resource.)

The quantitative measure might be continuous, such as the quantity of fuel. Or it could be

a discrete measure, such as a number of chairs occupied. Thus, a resource has a CapacityType,

where the two CapacityTypes are DiscreteCapacity and ContinuousCapacity.

Capacity can be related to various other resource-theoretic predicates. In the following rules,

for future incorporation into the DAML ontology, R stands for a resource, A for an activity, T

for a time interval, and t for a time instant. The expression use(A,R,T/t) means that activity A

uses resource R over time interval T or for time instant t. The expression capacity(R,T/t) refers

to the capacity of resource R over time interval T or for time instant t.

The capacity of a persistent resource at the beginning of its use is the same as at the end.

reusable(R) & use(A;R; T)) capacity(R; start(T)) = capacity(R; end(T))

The quantity of a consumable resource at the beginning of its use is more than at the end.

consumable(R) & use(A;R; T)) capacity(R; start(T)) > capacity(R; end(T))

When an agent replenishes a resource during period T, there is more after the replenishment.

replenish(A;R; T)) capacity(R; start(T)) < capacity(R; end(T))

When an reusable resource is used for period T, it is locked at the beginning of T and released

at the end.

reusable(R) & use(A;R; T)) lock(A;R; start(T)) & release(A;R; end(T))

Capacities of resources can also have a capacityGranularity, that is, the units in terms of which

the capacity is measured.

6.3 Resource Composition

A resource can be atomic, or it can be an aggregate. Thus, AtomicResource and AggregateResource

are subclasses of Resource.

Some atomic resources can be shared by di�erent activities, while others cannot. For example,

several activities may need a table but can in fact use the same table. We thus distinguish

between unit capacity atomic resources, whose availability to an activity is a yes-no question, and

batch capacity atomic resources, which can support multiple activities in a synchronized fashion.

UnitCapacityResource and BatchCapacityResource are subclasses of AtomicResource.

Aggregates can be conjunctive or disjunctive. For conjunctive aggregates, all the elements

must be allocated to the activity. For a disjunctive aggregate a subset of the elements in the

aggregate can be allocated. An example of a disjunctive resource is a process that requires any 3

adjacent chairs of 100 chairs in a room. Thus, ConjunctiveAggregateResource and DisjunctiveAg-

gregateResource are subclasses of AggregateResource.

Shareable resources should be understood in terms of batch capacity resources and aggrega-

tion.

A very important use of an ontology of resources could be in a monotonic version of \negation

as failure" in DAML-L. In this view, \not P" would not be negation as failure. Rather one would

use the predicate \cant�nd(P,R)" where R is some indication of the resources to devote to the

search for a proof of P. R could then be a list or description of web resources, a certain number

of inference steps, or a certain amount of time, for example.

7 Summary and Current Status

DAML-S is an attempt to provide an ontology, within the framework of the DARPA Agent

Markup Language, for describing Web services. It will enable users and software agents to

automatically discover, invoke, compose, and monitor Web resources o�ering services, under

speci�ed constraints.

This white paper accompanies a second prerelease of DAML-S, version 0.6. The prerelease

materials can be found at http://www.daml.org/services/. When our work on groundings is

completed, version 1.0 will be released, at the same URL.

We expect to enhance DAML-S in the future in ways that we have indicated in this white

paper, and in response to users' experience with it. We believe it will help make the Semantic

Web a place where people can not only �nd out information but also get things done.

References

[1] J. F. Allen and H. A. Kautz. A model of naive temporal reasoning. In J. R. Hobbs and R. C. Moore,
editors, Formal Theories of the Commonsense World, pages 251{268. Ablex Publishing Corp., 1985.

[2] T. Berners-Lee, J. Hendler, and O. Lassila. The semantic web. Scienti�c American, 284(5):34{43,
2001.

[3] K. Decker, K. Sycara, and M. Williamson. Middle-Agents for the Internet. In IJCAI97, 1997.

[4] G. Denker, J. Hobbs, D. Martin, S. Narayanan, and R. Waldinger. Accessing information and services
on the daml-enabled web. In Proc. Second Int'l Workshop Semantic Web (SemWeb'2001), 2001.

[5] T. Finin, Y. Labrou, and J. May�eld. KQML as an agent communication language. In J. Bradshaw,
editor, Software Agents. MIT Press, Cambridge, 1997.

[6] M. Ghallab et. al. Pddl-the planning domain de�nition language v. 2. Technical Report, report CVC
TR-98-003/DCS TR-1165, Yale Center for Computational Vision and Control, 1998.

[7] J. Hendler and D. L. McGuinness. Darpa agent markup language. IEEE Intelligent Systems, 15(6):72{
73, 2001.

[8] H. Levesque, R. Reiter, Y. Lesperance, F. Lin, and R. Scherl. GOLOG: A Logic programming language
for dynamic domains. Journal of Logic Programming, 31(1-3):59{84, April-June 1997.

[9] D. Martin, A. Cheyer, and D. Moran. The Open Agent Architecture: A Framework for Building
Distributed Software Systems. Applied Arti�cial Intelligence, 13(1-2):92{128, 1999.

[10] S. McIlraith, T. C. Son, and H. Zeng. Mobilizing the web with daml-enabled web service. In Proc.
Second Int'l Workshop Semantic Web (SemWeb'2001), 2001.

[11] S. McIlraith, T. C. Son, and H. Zeng. Semantic web service. IEEE Intelligent Systems, 16(2):46{53,
2001.

[12] J. Meseguer. Conditional Rewriting Logic as a Uni�ed Model of Concurrency. Theoretical Computer
Science, 96(1):73{155, 1992.

[13] R. Milner. Communicating with Mobile Agents: The pi-Calculus. Cambridge University Press,
Cambridge, 1999.

[14] S. Narayanan. Reasoning about actions in narrative understanding. In Proc. International Joint Con-
ference on Arti�cal Intelligence (IJCAI'1999), pages 350{357. Morgan Kaufman Press, San Francisco,
1999.

[15] C. Schleno�, M. Gruninger, F. Tissot, J. Valois, J. Lubell, and J. Lee. The Process Speci�cation
Language (PSL): Overview and version 1.0 speci�cation. NISTIR 6459, National Institute of Standards
and Technology, Gaithersburg, MD., 2000.

[16] K. Sycara and M. Klusch. Brokering and matchmaking for coordination of agent societies: A survey.
In A. e. a. Omicini, editor, Coordination of Internet Agents. Springer, 2001.

[17] K. Sycara, M. Klusch, S. Wido�, and J. Lu. Dynamic service matchmaking among agents in open
information environments. ACM SIGMOD Record (Special Issue on Semantic Interoperability in
Global Information Systems), 28(1):47{53, 1999.

[18] H.-C. Wong and K. Sycara. A Taxonomy of Middle-agents for the Internet. In ICMAS'2000, 2000.

