
DAML-S: Semantic Markup for Web Services

The DAML Services Coalition
�

Abstract

The Semantic Web should enable greater access not only to content but also to services on

the Web. Users and software agents should be able to discover, invoke, compose, and monitor

Web resources o�ering particular services and having particular properties. As part of the

DARPA Agent Markup Language program, we are developing an ontology of services, called

DAML-S, that will make these functionalities possible. In this white paper we describe the

overall structure of the ontology and its three main parts: the service pro�le for advertising

and discovering services; the process model, which gives a detailed description of a service's

operation; and the grounding, which provides details on how to interoperate with a service,

via messages. We also discuss the motivation for DAML-S, and work on related ontologies for

resources and for time.

This white paper accompanies DAML-S version 0.7, which is available at

http://www.daml.org/services/.

1 Introduction: Services on the Semantic Web

E�orts toward the creation of the Semantic Web are gaining momentum [1]. Soon it will be

possible to access Web resources by content rather than just by keywords. A signi�cant force in

this movement is the development of a new generation of Web markup languages such as DAML|

the DARPA Agent Markup Language [8], DAML+OIL [9] and OWL [4].1 These languages

enable the creation of ontologies for any domain and the instantiation of these ontologies in the

description of speci�c Web sites.

Among the most important Web resources are those that provide services. By \service" we

mean Web sites that do not merely provide static information but allow one to e�ect some action

or change in the world, such as the sale of a product or the control of a physical device. The

Semantic Web should enable users to locate, select, employ, compose, and monitor Web-based

services automatically.

To make use of a Web service, a software agent needs a computer-interpretable description

of the service, and the means by which it is accessed. An important goal for Semantic Web

markup languages, then, is to establish a framework within which these descriptions are made

and shared. Web sites should be able to employ a set of basic classes and properties for declaring

and describing services, and the ontology structuring mechanisms of DAML+OIL provide the

appropriate framework within which to do this.

�This work is the collaborative e�ort of projects at BBN Technologies, Carnegie-Mellon University, Nokia,

Stanford University, SRI International, and Yale University. Mark Burstein participated for BBN Technologies.

The participants for Carnegie-Mellon University are Anupriya Ankolenkar, Massimo Paolucci, Terry Payne, and

Katia Sycara. Ora Lassila participated for Nokia. The participants for Stanford University are Sheila McIlraith,

Tran Cao Son, and Honglei Zeng. The participants for SRI International are Jerry Hobbs, David Martin, and Srini

Narayanan. Drew McDermott participated for Yale.
1The current version of DAML-S is built on top of DAML+OIL. Future versions are likely to be built on top of

OWL, when it becomes suÆciently mature.

1

This paper describes a collaborative e�ort by BBN Technologies, Carnegie Mellon University,

Nokia, Stanford University, SRI International, and Yale University, to de�ne just such an ontology.

We call this language DAML-S. We �rst motivate our e�ort with some sample tasks. In the central

part of the paper we describe the upper ontology for services that we have developed, including its

subontologies for pro�les, processes, and groundings, and related work on ontologies for resources

and time, and thoughts toward a future ontology of process control.

This paper accompanies DAML-S version 0.7, which is available at [3]. Please note that, in

addition to the DAML+OIL ontology �les, the release site includes examples and additional forms

of documentation, including, in particular, a code walk-through illustrative of many points in this

document, additional explanatory material (in HTML) regarding the grounding and the use of

pro�le-based class hierarchies, and information about status of this work, including unresolved

issues and future directions.

2 Some Motivating Tasks

Services can be simple or primitive in the sense that they invoke only a single Web-accessible

computer program, sensor, or device that does not rely upon another Web service, and there is

no ongoing interaction between the user and the service, beyond a simple response. For example, a

service that returns a postal code or the longitude and latitude when given an address would be in

this category. Alternately, services can be complex, composed of multiple primitive services, often

requiring an interaction or conversation between the user and the services, so that the user can

make choices and provide information conditionally. One's interaction with www.amazon.com to

buy a book is like this; the user searches for books by various criteria, perhaps reads reviews, may

or may not decide to buy, and gives credit card and mailing information. DAML-S is meant to

support both categories of services, but complex services have provided the primary motivations

for the features of the language. The following four sample tasks will give the reader an idea of

the kinds of tasks we expect DAML-S to enable [13, 14].

1. Automatic Web service discovery. Automatic Web service discovery involves the auto-

matic location of Web services that provide a particular service and that adhere to requested

constraints. For example, the user may want to �nd a service that sells airline tickets be-

tween two given cities and accepts a particular credit card. Currently, this task must be

performed by a human who might use a search engine to �nd a service, read the Web page,

and execute the service manually, to determine if it satis�es the constraints. With DAML-S

markup of services, the information necessary for Web service discovery could be speci�ed

as computer-interpretable semantic markup at the service Web sites, and a service registry

or ontology-enhanced search engine could be used to locate the services automatically. Al-

ternatively, a server could proactively advertise itself in DAML-S with a service registry,

also called middle agent [5, 21, 12], so that requesters can �nd it when they query the

registry. Thus, DAML-S must provide declarative advertisements of service properties and

capabilities that can be used for automatic service discovery.

2. Automatic Web service invocation. Automatic Web service invocation involves the

automatic execution of an identi�ed Web service by a computer program or agent. For

example, the user could request the purchase of an airline ticket from a particular site on

a particular
ight. Currently, a user must go to the Web site o�ering that service, �ll out

a form, and click on a button to execute the service. Alternately, the user might send an

HTTP request directly to the service with the appropriate parameters in HTML. In either

case, a human in the loop is necessary. Execution of a Web service can be thought of

as a collection of function calls. DAML-S markup of Web services provides a declarative,

computer-interpretable API for executing these function calls. A software agent should be

able to interpret the markup to understand what input is necessary to the service call, what

information will be returned, and how to execute the service automatically. Thus, DAML-S

should provide declarative APIs for Web services that are necessary for automated Web

service execution.

3. Automatic Web service composition and interoperation. This task involves the

automatic selection, composition, and interoperation of Web services to perform some task,

given a high-level description of an objective. For example, the user may want to make all

the travel arrangements for a trip to a conference. Currently, the user must select the Web

services, specify the composition manually, and make sure that any software needed for the

interoperation is custom-created. With DAML-S markup of Web services, the information

necessary to select and compose services will be encoded at the service Web sites. Software

can be written to manipulate these representations, together with a speci�cation of the

objectives of the task, to achieve the task automatically. Thus, DAML-S must provide

declarative speci�cations of the prerequisites and consequences of individual service use

that are necessary for automatic service composition and interoperation.

4. Automatic Web service execution monitoring. Individual services and, even more,

compositions of services, will often require some time to execute completely. A user may

want to know during this period what the status of his or her or request is, or plans may have

changed, thus requiring alterations in the actions the software agent takes. For example,

a user may want to make sure that a hotel reservation has already been made. For these

purposes, it would be good to have the ability to �nd out where in the process the request

is and whether any unanticipated glitches have appeared. Thus, DAML-S should provide

descriptors for the execution of services. This part of DAML-S is a goal of ours, but it has

not yet been de�ned.

Any Web-accessible program/sensor/device that is declared as a service will be regarded as

a service. DAML-S does not preclude declaring simple, static Web pages to be services. But

our primary motivation in de�ning DAML-S has been to support more complex tasks like those

described above.

3 An Upper Ontology for Services

Our structuring of the ontology of services is motivated by the need to provide three essential

types of knowledge about a service (shown in �gure 1), each characterized by the question it

answers:

� What does the service require of the user(s), or other agents, and provide for them? The

answer to this question is given in the \pro�le2." Thus, the class Service presents a

ServiceProfile

� How does it work? The answer to this question is given in the \model." Thus, the class

Service is describedBy a ServiceModel

2Service pro�le has also been called \service capability advertisement" [19].

Service

ServiceModel

provides

supportspresents

DescribedBy
ServiceProfile ServiceGrounding

Resource

:KDW�WKH

VHUYLFH�GRHV

+RZ�LW�ZRUNV

+RZ�WR

DFFHVV�LW

Figure 1: Top level of the service ontology

� How is it used? The answer to this question is given in the \grounding." Thus, the class

Service supports a ServiceGrounding.

The class Service provides a organizational point of reference for declaring Web services;

one instance of Service will exist for each distinct published service. The properties presents,

describedBy, and supports are properties of Service. The classes ServiceProfile, Service-

Model, and ServiceGrounding are the respective ranges of those properties. Each instance

of Service will present a descendant class of ServiceProfile, be describedBy a descendant

class of ServiceModel, and support a descendant class of ServiceGrounding. The details of

pro�les, models, and groundings may vary widely from one type of service to another|that is,

from one descendant class of Service to another. But each of these three classes provides an

essential type of information about the service, as characterized in the rest of the paper.

The service pro�le tells \what the service does"; that is, it gives the types of information

needed by a service-seeking agent (or matchmaking agent acting on behalf of a service-seeking

agent) to determine whether the service meets its needs. In addition to representing the capabil-

ities of a service, the pro�le can be used to express the needs of the service-seeking agent, so that

a matchmaker has a convenient dual-purpose representation upon which to base its operations.

The service model tells \how the service works"; that is, it describes what happens when the

service is carried out. For nontrivial services (those composed of several steps over time), this

description may be used by a service-seeking agent in at least four di�erent ways: (1) to perform a

more in-depth analysis of whether the service meets its needs; (2) to compose service descriptions

from multiple services to perform a speci�c task; (3) during the course of the service enactment,

to coordinate the activities of the di�erent participants; and (4) to monitor the execution of the

service.

A service grounding (\grounding" for short) speci�es the details of how an agent can access

a service. Typically a grounding will specify a communication protocol, message formats, and

other service-speci�c details such as port numbers used in contacting the service. In addition, the

grounding must specify, for each abstract type speci�ed in the ServiceModel, an unambiguous

way of exchanging data elements of that type with the service (that is, the serialization techniques

employed).

Generally speaking, the ServiceProfile provides the information needed for an agent to dis-

cover a service. Taken together, the ServiceModel and ServiceGrounding objects associated

with a service provide enough information for an agent to make use of a service.

The upper ontology for services speci�es only two cardinality constraints: a service can be

described by at most one service model, and a service model must be accompanied by at least one

supporting grounding. The upper ontology deliberately does not specify any minimum cardinality

for the properties presents or describedBy. (Although, in principle, a service needs all three prop-

erties to be fully characterized, it is easy to imagine situations in which a partial characterization

could be useful.) Nor does the upper ontology specify any maximum cardinality for presents or

supports. (It will be extremely useful for some services to o�er multiple pro�les and/or multiple

groundings.)

Finally, it must be noted that while we de�ne one particular upper ontology for pro�les, one

for service models, and one for groundings, nevertheless DAML-S allows for the construction of

alternative approaches in each case. Our intent here is not to prescribe a single approach in each

of the three areas, but rather to provide default approaches that will be useful for the majority of

cases. In the following three sections we discuss the resulting service pro�le, service model, and

service grounding in greater detail.

4 Service Pro�les

A transaction in a web services marketplace involves three parties: the service requesters, the ser-

vice provider, and infrastructure components [20, 21]. The service requester, which may broadly

identify with the buyer, seeks a service to complete its work; the service provider, which can be

broadly identi�ed with the seller, provides a service sought by the requester. In an open envi-

ronment such as the Internet, the requester may not know ahead of time of the existence of the

provider, so the requester relies on infrastructure components that act like registries to �nd the

appropriate provider. For instance, a requester may need a news service that reports stock quotes

with no delay with respect to the market. The role of the registries is to match the request with

the o�ers of service providers to identify which of them is the best match. Within the DAML-S

framework, the Service Pro�le provides a way to describe the services o�ered by the providers,

and the services needed by the requesters.

The Service Pro�le does not mandate any representation of services; rather, using the DAML

subclassing it is possible to create specialized representations of services that can be used as service

pro�les. DAML-S provides one possible representation through the class Pro�le. A DAML-S

Pro�le describes a service as a function of three basic types of information: what organization

provides the service, what function the service computes, and a host of features that specify

characteristics of the service. The three pieces of information are reviewed in order below.

The provider information consists of contact information that refers to the entity that provides

the service. For instance, contact information may refer to the maintenance operator that is

responsible for running the service, or to a customer representative that may provide additional

information about the service.

The functional description of the service is expressed in terms of the transformation produced

by the service. Speci�cally, it speci�ces the inputs required by the service and the outputs

generated; furthermore, since a service may require external conditions to be satis�ed, and it

has the e�ect of changing such conditions, the pro�le describes the preconditions required by

the service and the expected e�ects that result from the execution of the service. For example,

a selling service may require as a precondition a valid credit card and as input the credit card

number and expiration date. As output it generates a receipt, and as e�ect the card is charged.

Finally, the pro�le allows the description of a host of properties that are used to describe

features of the service. The �rst type of information speci�es the category of a given service,

for example, the category of the service within the UNSPSC classi�cation system. The second

type of information is quality rating of the service: some services may be very good, reliable, and

quick to respond; others may be unreliable, sluggish, or even malevolent. Before using a service,

a requester may want to check what kind of service it is dealing with; therefore, a service may

want to publish its rating within a speci�ed rating system, to showcase the quality of service

it provides. It is up to the service requester to use this information, to verify that it is indeed

correct, and to decide what to do with it. The last type of information is an unbounded list

of service parameters that can contain any type of information. The DAML-S Pro�le provides

a few examples of such parameters ranging from an estimate of the max response time, to the

geographic radius of a service.

4.1 Compiling a Pro�le: The Relation with Process Model

The Pro�le of a service provides a concise description of the service to a registry, but once the

service has been selected the Pro�le is useless; rather, the client will use the Process Model to

control the interaction with the service. Although the Pro�le and the Process Model play di�erent

roles during the transaction between Web services, they are two di�erent representations of the

same service, so it is natural to expect that the input, output, precondition, and e�ects (hereafter

IOPEs) of one are re
ected in the IOPEs of the other.

DAML-S does not dictate any constraint between Pro�les and Process Models, so the two

descriptions may be inconsistent without a�ecting the validity of the DAML expression. Still, if

the Pro�le represents a service that is not consistent with the service represented in the Process

Model, the interaction will break at some point. As an extreme example, imagine a service that

advertises as a travel agent, but adopts the process model of a book selling agent; it will be

selected to reserve travels, but it will fail to do that, asking instead for book titles and ISBN

numbers. On the other side, it will never be selected by services that want to buy books, so it

will never sell a book either.

The selection of the IOPEs to specify in the Pro�le is quite a tricky process. It should avoid

misrepresentation of the service, so ideally it would require all the IOPEs used in the Process

Model. On the other side, some of those IOPEs may be so general that they do not describe

the service. Another thing to consider is the registry's algorithm for matching requests with

providers. Furthermore, the Pro�le implicitly speci�es the intended purpose of the service: it

advertises those functionalities that the service wants to provide, while it may hide (not declare

publicly) other functionalities. As an example, consider a book-selling service that may involve

two functionalities: the �rst one allows other services to browse its site to �nd books of interest,

and the second one allows users to buy the books they found. The book seller has the choice of

advertising just the book-buying functionality or both the browsing functionality and the buying

functionality. In the latter case, the service makes public the fact that it can provide browsing

services, and it allows everybody to browse its registry without buying a book. In contrast,

by advertising only the book-selling functionality, but not the browsing, the agent discourages

browsing by requesters who do not intend to buy. The decision as to which functionalities to

advertise determines how the service will be used: a requester who intends to browse but not

to buy would select a service that advertises both buying and browsing capabilities, but not one

that advertises buying only.

In the description so far, we tacitly assumed a registry model in which service capabilities are

advertised, and then matched against requests of service. This is the model adopted by registries

like UDDI. While this is the most likely model to be adopted by Web services, other form of

registry are also possible. For example, when the demand for a service is higher than the supply,

then advertising needs for service is more eÆcient then advertising o�ered services since a provider

can select the next request as soon as it is free; furthermore, in a pure P2P architecture there

would be no registry at all. Indeed the types of registry may vary widely and as many as 28

di�erent types have been identi�ed [21, 5]. By using a declarative representation of Web services,

the service pro�le is not committed to any form of registry, but it can be used in all of them.

Since the service pro�le represents both o�ers of services and needs of services, then it can be

used in a reverse registry that records needs and queries on o�ers. Indeed, the Service Pro�le can

be used in all 28 types of registry.

4.2 Pro�le Properties

In the following we describe in detail the �elds of the pro�le model; we classify them into four

sections: the �rst one (4.2.1) describes the properties that link the Service Pro�le class with the

Service class and Process Model class; the second section (4.2.2) describes the form of contact

information and the Description of the pro�le | this is information usually intended for human

consumption; in the third section (4.2.4), we discuss the functional representation and speci�cally

the IOPEs; �nally, in the last section (4.2.6), we describe the attributes of the Pro�le.

4.2.1 Service Pro�le

The class ServicePro�le provides a superclass of every type of high-level description of the ser-

vice. ServicePro�le does not mandate any representation of services, but it mandates the basic

information to link any instance of pro�le with an instance of service.

There is a two-way relation between a service and a pro�le, so that a service can be related

to a pro�le and a pro�le to a service. These relations are expressed by the properties presents

and presentedBy.

presents describes a relation between an instance of service and an instance of pro�le, it basically

says that the service is described by the pro�le.

presentedBy is the inverse of presents; it speci�es that a given pro�le describes a service.

4.2.2 Service Name, Contacts and Description

Some properties of the pro�le provide human-readable information that is unlikely to be automati-

cally processed. These properties include serviceName, textDescription and contactInformation.

A pro�le may have at most one service name and text description, but as many items of contact

information as the provider wants to o�er.

serviceName refers to the name of the service that is being o�ered. It can be used as an

identi�er of the service.

textDescription provides a brief description of the service. It summarizes what the service

o�ers, it describes what the service requires to work, and it indicates any additional infor-

mation that the compiler of the pro�le wants to share with the receivers.

contactInformation speci�es a person or other entity that the provider of the service wants to

share with the reader. Each item of contact information is an instance of the class Actor

described below.

4.2.3 Actor

The class Actor provides information on the provider or the requester of the service; speci�-

cally, it provides the following information.

name The name property of Actor speci�es the name of the actor. This could be either a person

name or a company name.

title Title of the contact, a CEO, or ServiceDepartment or whatever is deemed appropriate

phone A phone number that can be used to gather information on the service

fax A fax number that can be used to gather information on the service

email An e-mail address that can be used to gather information on the service

physicalAddress A physical address that can be used to gather information on the service

webURL A URL of the product or company Website

4.2.4 Functionality Description

An essential component of the pro�le is the speci�cation of what functionality the service provides

and the speci�cation of the conditions that must be satis�ed for a successful result. In addition,

the pro�le speci�es what conditions result from the service, including the expected and unexpected

results of the service activity. The DAML-S Pro�le represents two aspects of the functionality of

the service: the information transformation and the state change produced by the execution of

the service. For example, to complete the sale, a book-selling service requires as input a credit

card number and expiration date, but also the precondition that the credit card actually exists

and is not overdrawn. The result of the sale is the output of a receipt that con�rms the proper

execution of the transaction, and as e�ect the transfer of ownership and the physical transfer of

the book from the the warehouse of the seller to the address of the buyer.

The information transformation produced by the service is represented by input and output

properties of the pro�le. The input property speci�es the information that the service requires to

proceed with the computation. For example, a book-selling service could require the credit-card

number and bibliographical information of the book to sell. The outputs specify what is the

result of the operation of the service. For the book-selling agent the output could be a receipt

that acknowledges the sale.

The state change produced by the execution of the service is speci�ed through the precondi-

tion and e�ect properties of the pro�le. Precondition presents logical conditions that should be

satis�ed prior to the service being requested. These conditions should have associated explicit

e�ects that may occur as a result of the service being performed. E�ects are the result of the

successful execution of a service. The representation of preconditions and e�ects depends on the

representation of rules in the DAML language. Currently, a working group is trying to specify

rules in DAML, but no proposal has been put forward. For this reason, the �elds precondition and

e�ect are mapped to thing meaning that anything is possible, but this will have to be modi�ed

in future releases of the pro�le.

input speci�es one of the inputs of the service. It takes as value an instance of Parameter-

Description (see below) that speci�es an id of the input, a value and a reference to the

corresponding input in the process model. The value of the property is an instance of

ParameterDescription described below (4.2.5).

output speci�es one of the outputs of the service. It takes as value an instance of Parameter-

Description (see below) that speci�es an id of the output, a value and a reference to the

corresponding output in the process model. The value of the property is an instance of

ParameterDescription described below (4.2.5).

precondition speci�es one of the preconditions of the service. It takes as value an instance of

ParameterDescription (4.2.5) that speci�es an id of the precondition, a value and a reference

to the corresponding precondition in the process model. The value of the property is an

instance of ParameterDescription described below (4.2.5).

e�ect speci�es one of the e�ects of the service. It takes as value an instance of ParameterDescrip-

tion (4.2.5) that speci�es an id of the e�ect, a value and a reference to the corresponding

e�ect in the process model. The value of the property is an instance of ParameterDescription

described below (4.2.5).

4.2.5 ParameterDescription

The class ParameterDescription provides values to inputs and outputs. It collects in one class

the name of the input or output that can be used as an identi�er, its value and a reference to the

corresponding input or output in the process model.

parameterName provides the name of the input or output, which could be just a literal, or

perhaps the URI of the process parameter (a property).

restrictedTo provides a restriction on the values of the input or output.

refersTo provides a reference to the input or output in the process model.

4.2.6 Pro�le Attributes

In the previous section we introduced the functional description of services, but there are other

aspects of services of which users should be aware. These additional attributes include the quality

guarantees that are provided by the service, possible classi�cation of the service, and additional

parameters that the service may want to specify.

serviceParameter is an expandable list of properties that may accompany a pro�le description.

The value of the property is an instance of the class ServiceParameter (4.2.7).

serviceCategory refers to an entry in some ontology or taxonomy of services. The value of the

property is an instance of the class ServiceCategory (4.2.9)

QualityRating is used to specify the rating of a service using some rating system. The rating

of a service provides the potential client with information about the quality of the service

provided. (4.2.8)

4.2.7 ServiceParameter

serviceParameterName is the name of the actual parameter, which could be just a literal, or

perhaps the URI of the process parameter (a property).

sParameter points to the value of the parameter within some DAML ontology.

4.2.8 QualityRating

ratingName points to the name of the rating service.

rating stores the value of the rating within a given rating service.

4.2.9 ServiceCategory

ServiceCategory describes categories of services on the bases of some classi�cation that may be

outside DAML-S and possibly outside DAML. In the latter case, they may require some specialized

reasoner if any inference has to be done with it.

categoryName is the name of the actual category, which could be just a literal, or perhaps the

URI of the process parameter (a property).

taxonomy stores a reference to the taxonomy scheme. It can be either a URI of the taxonomy,

or a URL where the taxonomy resides, or the name of the taxonomy or anything else.

value points to the value in a speci�c taxonomy There may be more than one value for each

taxonomy, so no restriction is added here.

code to each type of service stores the code associated to a taxonomy.

4.3 Deprecated Properties: changes from 0.6 to 0.7

The following attributes used in version 0.6 have been deprecated in version 0.7.

intendedPurpose provides information on what constitutes successful accomplishment of a ser-

vice execution.

providedBy links the service pro�le to an Actor who provides the service.

requestedBy links the service pro�le to an Actor who requests the service.

domainResource - not to be confused with RDF resources, or domain restrictions - speci�es re-

sources that are necessary for the task to be executed. No range restrictions are placed on the

resource at present (as with those used by the process model). Speci�c service descriptions

will specialize this property by restricting the range appropriately using subPropertyOf.

geographicRadius refers to the geographic scope of the service. This may be at the global or

national scale (e.g., for e-commerce) or at a local scale (e.g., pizza delivery).

degreeOfQuality provides quali�cations about the service. For example, the following two

subproperties are examples of di�erent degrees of quality, and could be de�ned within some

additional ontology.

communicationThru provides a high-level summary of how a service may communicate, such

as what agent communication language (ACL) is used (e.g., FIPA, KQML, SOAP). This

summarizes the descriptions provided by the service grounding and is used when matching

services, but it is not intended to replace the detail provided by the service grounding.

serviceType refers to a high-level classi�cation of the service, for example B2B or B2C.

qualityGuarantee are guarantees that the service promises to deliver, such as guaranteeing to

provide the lowest possible interest rate, or a respose within 3 minutes.

5 Modeling Services as Processes

To give a detailed perspective on a service, it can be viewed as a process. We have de�ned a

particular subclass of ServiceModel, the ProcessModel, which draws upon well-established

work in a variety of �elds, such as AI planning and work
ow automation, and which we believe

supports the representational needs of a very broad array of services on the Web. As with the

other DAML-S subontologies, our intent here is not to mandate the service modeling approach

to be used with all services, but rather to provide a general, canonical, and broadly applicable

approach that will be useful for the great majority of cases.

There are two chief components of a process model. The process | which describes a service

in terms of its inputs, outputs, preconditions, e�ects, and, where appropriate, its component

subprocesses | enables planning, composition and agent/service interoperation. The process

control model allows agents to monitor the execution of a service request. We refer to the �rst

part as the Process Ontology and the second as the Process Control Ontology. Only the former has

been de�ned in the current version of DAML-S, but below we brie
y describe our intentions with

regard to the latter. To support both Process and Process Control speci�cation, we have de�ned

an ontology of resources, and a simple ontology of time, both described below; in subsequent

versions these will be elaborated further.

5.1 The Process Ontology

We expect our process ontology to serve as the basis for specifying a wide array of services.

In developing the ontology, we draw from a variety of sources, including work in AI on stan-

dardizations of planning languages [7], work in programming languages and distributed sys-

tems [16, 15], emerging standards in process modeling and work
ow technology such as the

NIST's Process Speci�cation Language (PSL) [18] and the Work
ow Management Coalition ef-

fort (http://www.aiim.org/wfmc), work on modeling verb semantics and event structure [17],

previous work on action-inspired Web service markup [14], work in AI on modeling complex

actions [10], and work in agent communication languages [12, 6].

The primary kind of entity in the Process Ontology is, unsurprisingly, a \process".3 A process

can have any number of inputs, representing the information that is, under some conditions,
3This term was chosen over the terms \event" and \action", in part because it is more suggestive of internal

structure than \event" and because it does not necessarily presume an agent executing the process and thus is more

required for the execution of the process. It can have any number of outputs, the information

that the process provides, conditionally, after its execution. Besides inputs and outputs, another

important type of parameter speci�es the participants in a process. A variety of other parameters

may also be declared, including, for physical devices, such things as rates, forces, and knob

settings. There can be any number of preconditions, which must all hold in order for the process

to be invoked. Finally, the process can have any number of e�ects. Outputs and e�ects can have

conditions associated with them.

More precisely, in DAML-S:

� Process

As shown in Figure 2, we distinguish between three types of processes: atomic, simple, and

composite; each of these is described further below.

<daml:Class rdf:ID="Process">

<rdfs:comment> The most general class of processes </rdfs:comment>

<daml:disjointUnionOf rdf:parseType="daml:collection">

<daml:Class rdf:about="#AtomicProcess"/>

<daml:Class rdf:about="#SimpleProcess"/>

<daml:Class rdf:about="#CompositeProcess"/>

</daml:unionOf>

</daml:Class>

Class Process has related properties parameter, input, (conditional) output, participant,

precondition, and (conditional) e�ect. Input, output, and participant are categorized as

subproperties of parameter. The range of each of these properties, at the upper ontol-

ogy level, is left largely unrestricted. Subclasses of Process for speci�c domains can use

DAML+OIL language elements to indicate more speci�c range restrictions, as well as car-

dinality restrictions for each of these properties.

The following example shows the de�nition of parameter, and its subproperty input; the
other properties are de�ned similarly:

<rdf:Property rdf:ID="parameter">

<rdfs:domain rdf:resource="#Process"/>

<rdfs:range rdf:resource=""http://www.daml.org/2001/03/daml+oil#Thing"/>

</rdf:Property>

<daml:Property rdf:ID="input">

<rdfs:subPropertyOf rdf:resource="#parameter"/>

<daml:range rdf:resource="http://www.daml.org/2001/03/daml+oil#Thing"/>

</daml:Property>

In addition to its action-related properties, a Process has a number of bookkeeping prop-

erties such as name(rdf:literal), address (URI), documentsRead (URI), and documentsUp-

dated (URI).

� AtomicProcess

The atomic processes are directly invocable (by passing them the appropriate messages),

have no subprocesses, and execute in a single step, from the perspective of the service

general than \action". Ultimately, however, the choice is arbitrary. It is modeled after computational procedures

or planning operators.

Process

ControlConstruct

Sequence RepeatUntil…

composedBy

 expand
collapse

input
 precondition

output
effect

Composite
Process

Simple
Process

realizes
realizedBy

Condition

computedInput
computedOutput
computedEffect

computedPrecondition
invocable

Profile

hasProcess
hasProfile

ProcessComponent =
Process U ControlConstruct

components

ProcessComponent =
Process U ControlConstructProcessComponent =

Process U ControlConstruct

has
Grounding

Atomic
Process

Figure 2: Top level of the process ontology

requester. That is, they take an input message, execute, and then return their output

message | and the service requester has no visibility into the service's execution. For each

atomic process, there must be provided a grounding that enables a service requester to

construct these messages, as explained in Section 6. But these groundings are normally

declared separately from the process model, allowing for easy reuse of process models.

<daml:Class rdf:ID="AtomicProcess">

<daml:subClassOf rdf:resource="#Process"/>

</daml:Class>

� SimpleProcess

Simple processes are not invocable and are not associated with a grounding, but, like atomic

processes, they are conceived of as having single-step executions. Simple processes are

used as elements of abstraction; a simple process may be used either to provide a view of

(a specialized way of using) some atomic process, or a simpli�ed representation of some

composite process (for purposes of planning and reasoning). In the former case, the simple

process is realizedBy the atomic process; in the latter case, the simple process expandsTo

the composite process.

<daml:Class rdf:ID="SimpleProcess">

<daml:subClassOf rdf:resource="#Process"/>

</daml:Class>

<rdf:Property rdf:ID="realizedBy">

<rdfs:domain rdf:resource="#SimpleProcess"/>

<rdfs:range rdf:resource="#AtomicProcess"/>

<daml:inverseOf rdf:resource="#realizes"/>

</rdf:Property>

<rdf:Property rdf:ID="expandsTo">

<rdfs:domain rdf:resource="#SimpleProcess"/>

<rdfs:range rdf:resource="#CompositeProcess"/>

<daml:inverseOf rdf:resource="#collapsesTo"/>

</rdf:Property>

� CompositeProcess

Composite processes are decomposable into other (noncomposite or composite) processes;

their decomposition can be speci�ed by using control constructs such as Sequence and

If-Then-Else, which are discussed below. Such a decomposition normally shows, among

other things, how the various inputs of the process are accepted by particular subprocesses,

and how its various outputs are returned by particular subprocesses.

<daml:Class rdf:ID="CompositeProcess">

<daml:intersectionOf rdf:parseType="daml:collection">

<daml:Class rdf:about="#Process"/>

<daml:Restriction daml:cardinality="1">

<daml:onProperty rdf:resource="#composedOf"/>

</daml:Restriction>

</daml:intersectionOf>

</daml:Class>

A process can often be viewed at di�erent levels of granularity, either as a primitive, unde-

composable process or as a composite process. These are sometimes referred to as \black

box" and \glass box" views, respectively. Either perspective may be the more useful in some

given context. When a composite process is viewed as a black box, a simple process can be

used to represent this. In this case, the relationship between the simple and composite is

represented using the expandsTo property, and its inverse, the collapsesTo property. The

declaration of expandsTo is shown above, with SimpleProcess.

A CompositeProcessmust have a composedOf property by which is indicated the control

structure of the composite, using a ControlConstruct.

<rdf:Property rdf:ID="composedOf">

<rdfs:domain rdf:resource="#CompositeProcess"/>

<rdfs:range rdf:resource="#ControlConstruct"/>

</rdf:Property>

<daml:Class rdf:ID="ControlConstruct">

</daml:Class>

Each control construct, in turn, is associated with an additional property called compo-

nents to indicate the ordering and conditional execution of the subprocesses (or control

constructs) from which it is composed. For instance, the control construct, Sequence, has

a components property that ranges over a ProcessComponentList (a list whose items are

restricted to be ProcessComponents, which are either processes or control constructs).

<rdf:Property rdf:ID="components">

<rdfs:comment>

Holds the specific arrangement of subprocesses.

</rdfs:comment>

<rdfs:domain rdf:resource="#ControlConstruct"/>

</rdf:Property>

<daml:Class rdf:ID="ProcessComponent">

<rdfs:comment>

A ProcessComponent is either a Process or a ControlConstruct.

</rdfs:comment>

<daml:unionOf rdf:parseType="daml:collection">

<daml:Class rdf:about="#Process"/>

<daml:Class rdf:about="#ControlConstruct"/>

</daml:unionOf>

</daml:Class>

In the process upper ontology, we have included a minimal set of control constructs that can

be specialized to describe a variety of Web services. This minimal set consists of Sequence,

Split, Split + Join, Choice, Unordered, Condition, If-Then-Else, Iterate, Repeat-While, and

Repeat-Until.

Sequence : A list of Processes to be done in order. We use a DAML+OIL restriction to

restrict the components of a Sequence to be a List of process components | which

may be either processes (atomic, simple and/or composite) or control constructs.

<daml:Class rdf:ID="Sequence">

<rdfs:subClassOf rdf:resource="#ControlConstruct"/>

<rdfs:subClassOf>

<daml:Restriction>

<daml:onProperty rdf:resource="#components"/>

<daml:toClass rdf:resource="#ProcessComponentList"/>

</daml:Restriction>

</rdfs:subClassOf>

</daml:Class>

Split : The components of a Split process are a bag of process components to be executed

concurrently. No further speci�cation about waiting or synchronization is made at this

level.

<daml:Class rdf:ID="Split">

<rdfs:subClassOf rdf:resource="#ControlConstruct"/>

<rdfs:subClassOf>

<daml:Restriction>

<daml:onProperty rdf:resource="#components"/>

<daml:toClass rdf:resource="#ProcessComponentBag"/>

</daml:Restriction>

</rdfs:subClassOf>

</daml:Class>

Split is similar to other ontologies' use of Fork, Concurrent, or Parallel. We use the

DAML+OIL sameClassAs feature to accommodate the di�erent standards for speci-

fying this.

Split+Join : Here the process consists of concurrent execution of a bunch of process

components with barrier synchronization. With Split and Split+Join, we can de�ne

processes that have partial synchronization (e.g., split all and join some sub-bag).

Unordered : Allows the process components (speci�ed as a bag) to be executed in some un-

speci�ed order, or concurrently. All components must be executed. As with Split+Join,

completion of all components is required. Note that, while the unordered construct

itself gives no constraints on the order of execution, nevertheless, in some cases, there

may be constraints associated with subcomponents, which must be respected.

Examples:

1. If all process components are atomic processes, any ordering is permitted. For

instance, (Unordered a b) could result in the execution of a followed by b, or b

followed by a.

2. Let a, b, c, and d be atomic processes, and X, Y, and Z be composite processes:

X = (Sequence a b)

Y = (Sequence c d)

Z = (Unordered A B)

Z, then, translates to the following partial ordering:

{(a;b), (c;d)}

where ';' means \executes before", and the possible execution sequences (total

orders) include

{(a;b;c;d), (a;c;b;d), (a;c;d;b), (a;c;d;b),

(c;d;a;b), (c;a;d;b), (c;a;b;d)}

Choice : Choice is a control construct with additional properties chosen and chooseFrom.

These properties can be used both for process and execution control (e.g., choose from

chooseFrom and do chosen in sequence, or choose from chooseFrom and do chosen

in parallel) as well for constructing new subclasses like \choose at least n from m",

\choose exactly n from m", \choose at most n from m",4 and so on.

If-Then-Else : The If-Then-Else class is a control construct that has properties ifCon-

dition, then and else holding di�erent aspects of the If-Then-Else. Its semantics is

intended as \Test If-condition; if True do Then, if False do Else." (Note that the class

Condition, which is a placeholder for further work, will be de�ned as a class of logical

expressions.)

<rdf:Property rdf:ID="ifCondition">

<rdfs:comment> The if condition of an if-then-else </rdfs:comment>

<rdfs:domain rdf:resource="#If-Then-Else"/>

<rdfs:range> rdf:resource ="#Condition" </rdfs:range>

</rdf:Property>

<rdf:Property rdf:ID="then">

<rdfs:domain rdf:resource="#If-Then-Else"/>

<rdfs:range rdf:resource="#ProcessComponent"/>

</rdf:Property>

<rdf:Property rdf:ID="else">

4This can be obtained by restricting the size of the Process Bag that corresponds to the components of the

chosen and chooseFrom subprocesses using cardinality, min-cardinality, max-cardinality to get choose(n, m)(0 �

n � jcomponents(chooseFrom)j; 0 < m � jcomponents(chosen)j).

<rdfs:domain rdf:resource="#If-Then-Else"/>

<rdfs:range rdf:resource="#ProcessComponent"/>

</rdf:Property>

Iterate : Iterate is a control construct whose nextProcessComponent property has the

same value as the current process component. Repeat is de�ned as a synonym of

the Iterate class. The repeat/iterate process makes no assumption about how many

iterations are made or when to initiate, terminate, or resume. The initiation, ter-

mination or maintainance condition could be speci�ed with a whileCondition or an

untilCondition as below.5

Repeat-Until : The Repeat-Until class is similar to the Repeat-While class in that it

specializes the If-Then-Else class where the ifCondition is the same as the untilCon-

dition and di�erent from the Repeat-While class in that the else (compared to then)

property is the repeated process. Thus, the process repeats until the untilCondition

becomes true.

5.2 Specifying Data Flow; Parameter Bindings

When de�ning processes using DAML-S, there are many places where di�erent properties of

a process, or elements referred to by process properties, should be equated, in the sense that

the information denoted by the objects of these properties should be the identical whenever the

process is instantiated. A simple example is an atomic process to buy something, where the item

to be purchased is referred to by some name or identi�er provided as an input to the process,

and the various process outputs refer to the same identi�er, perhaps as parts of a message saying

whether the transaction succeeded or failed. There are many places where this equivalence needs

to be stated for the process model to be successfully applied by an agent, including:

� In relating process inputs to the process' conditions, outputs or e�ects, including its precon-

ditions, the conditions governing conditional e�ects and conditional outputs, and (properties

of) the e�ects and outputs themselves.

� In relating the inputs and outputs of a composite process to the inputs and outputs of its

various component subprocesses.

� In relating the inputs and outputs of elements of a composite process de�nition to param-

eters of other process components. For example, when a composite process is de�ned as

a sequence of subprocesses, the output of one component of the sequence may well be an

input to a subsequent component of the sequence.

In a programming language or in a logic language, we would show how these elements were

related using variables. In programming, the variables would be function arguments or local

variables. They would be referenced in a function body, to indicate how, for example, an argument

of some step was the same as an input to the whole function, and how it came from the output

of a previous step.

DAML+OIL does not provide for the use of variables, especially when de�ning related classes

in an ontology. There is no way to state in a class de�nition that one of the class properties

is referenced elsewhere by a variable name, and that this indicates that the properties' values

5Another possible extension is to ability to de�ne counters and use their values as termination conditions. This

could be part of an extended process control and execution monitoring ontology.

will be identical when the structure is instantiated. Using DAML+OIL, one can only de�ne the

inputs and outputs of processes as properties with range restrictions representing the /em classes

of allowed values, independent of any context.

We have considered many schemes to address this limitation in DAML+OIL expressivity, and

have, for this release, adopted the following DAML+OIL notation. The intent is to capture,

purely as a set of process annotations, this critical information about how processes are to be

instantiated and information shared between process elements. We have extended our process

ontology with the classes and properties used in this notation. The use of this notation in a

process de�nition will enable a specialized DAML-S process reasoner to use this information to

determine which properties should have \the same value" in any coherent instance of the process

being de�ned.

In this notation, an instance of the class ValueOf, with properties atClass and theProperty

denotes the object (value) of the speci�ed property at the speci�ed class. This style of reference

is intended to be used only within the context of a process being annotated using the property

sameValues, which relates a process class to a collection ofValueOf objects. The set of referenced

ValueOf elements are considered to share the same information, as if their values were represented

by a single variable.

The DAML+OIL de�nitions of these properties are as follows:

<!-- Used to annotate a process component by describing which

properties share values.

The range is a List of ValueOf instances. -->

<rdf:Property rdf:ID="sameValues">

<daml:domain rdf:resource="#ProcessComponent"/>

<daml:range rdf:resource="http://www.daml.org/2001/03/daml+oil#List"/>

</rdf:Property>

<daml:Class rdf:ID="ValueOf"/>

<!-- This property indicates the class (usually a Process) having the

referenced property -->

<rdf:Property rdf:ID="atClass">

<rdfs:domain rdf:resource="#ValueOf"/>

<rdfs:range rdf:resource="http://www.daml.org/2001/03/daml+oil#Class"/>

</rdf:Property>

<!-- The property (usually a parameter) whose values are

referred to. -->

<rdf:Property rdf:ID="theProperty">

<rdfs:domain rdf:resource="#ValueOf"/>

<rdfs:range rdf:resource="http://www.daml.org/2001/03/daml+oil#Property"/>

</rdf:Property>

5.3 Process Control Ontology

A process instantiation represents a complex process that is executing in the world. To monitor

and control the execution of a process, an agent needs a model to interpret process instantiations

with three characteristics:

1. It should provide the mapping rules for the various input state properties (inputs, precon-

ditions) to the corresponding output state properties.

2. It should provide a model of the temporal or state dependencies described by constructs

such as sequence, split, split+join, and so forth.

3. It should provide representations for messages about the execution state of atomic and

composite processes suÆcient to do execution monitoring. This allows an agent to keep

track of the status of executions, including successful, failed and interrupted processes, and

to respond to each appropriately.

We have not de�ned a process control ontology in the current version of DAML-S, but we

plan to in a future version.

5.4 Time

In conjunction with DAML-S, a temporal ontology is being developed. It is intended to cover a

wide range of temporal constructs, including topological relations among instants and intervals,

notions of duration, the clock and calendar, and a treatment of temporal granularity. The most

recent write-up on the ontology can be found at

http://www.ai.sri.com/daml/ontologies/time/Time.text.

A subset of this ontology has been coded in DAML+OIL { essentially, that part of the ontology

that is naturally expressible in description logic. This can be found at

http://www.ai.sri.com/daml/ontologies/time/Time.daml.

6 Grounding a Service to a Concrete Realization

The grounding of a service speci�es the details of how to access the service { details having

mainly to do with protocol and message formats, serialization, transport, and addressing. A

grounding can be thought of as a mapping from an abstract to a concrete speci�cation of those

service description elements that are required for interacting with the service { in particular,

for our purposes, the inputs and outputs of atomic processes. Note that in DAML-S, both

the ServicePro�le and the ServiceModel are thought of as abstract representations; only the

ServiceGrounding deals with the concrete level of speci�cation.

DAML-S does not include an abstract construct for describing messages. Rather, the abstract

content of a message is speci�ed, implicitly, by the input or output properties of some atomic

process. Thus, atomic processes, in addition to specifying the basic actions from which larger

processes are composed, can also be thought of as the communication primitives of an (abstract)

process speci�cation.

Concrete messages, however, are speci�ed explicitly in a grounding. The central function of

a DAML-S grounding is to show how the (abstract) inputs and outputs of an atomic process

are to be realized concretely as messages, which carry those inputs and outputs in some speci�c

transmittable format. Due to the existence of a signi�cant body of work in the area of concrete

message speci�cation, which is already well along in terms of industry adoption, we have chosen to

make use of the Web Services Description Language (WSDL), a particular speci�cation language

proposal with strong industry backing, and which we view as representative of such e�orts, in

crafting an initial grounding mechanism for DAML-S. As mentioned above, our intent here is not

to prescribe the grounding approach to be used with all services, but rather to provide a general,

canonical and broadly applicable approach that will be useful for the great majority of cases.

Binding to SOAP, HTTP, etc.

Process Model

Atomic Process

DL−Based Types

Inputs / Outputs

MessageOperation

DAML−S

WSDL

Figure 3: Mapping between DAML-S and WSDL

Web Services Description Language (WSDL) \is an XML format for describing network

services as a set of endpoints operating on messages containing either document-oriented or

procedure-oriented information. The operations and messages are described abstractly, and then

bound to a concrete network protocol and message format to de�ne an endpoint. Related concrete

endpoints are combined into abstract endpoints (services). WSDL is extensible to allow descrip-

tion of endpoints and their messages regardless of what message formats or network protocols are

used to communicate" [2].

It may readily be observed that DAML-S' concept of grounding is generally consistent with

WSDL's concept of binding. Indeed, by using the extensibility elements already provided by

WSDL, along with one new extensibility element proposed here, it is an easy matter to ground

a DAML-S atomic process. Here, we show how this may be done, relying on the WSDL 1.1

speci�cation. Note that the approach described here relies on certain assumptions about the

DAML-S and WSDL constructs to be employed, and does not cover all possible complementary

uses of DAML-S and WSDL. These assumptions will be discussed further in subsection 6.4.

6.1 Relationships between DAML-S and WSDL

The approach described here allows a service developer, who is going to provide service descrip-

tions for use by potential clients, to take advantage of the complementary strengths of these two

speci�cation languages. On the one hand (the abstract side of a service speci�cation), the devel-

oper bene�ts by making use of DAML-S' process model, and the expressiveness of DAML+OIL's

class typing mechanisms, relative to what XML Schema provides. On the other hand (the concrete

side), the developer bene�ts from the opportunity to reuse the extensive work done in WSDL

(and related languages such as SOAP), and software support for message exchanges based on

these declarations, as de�ned to date for various protocols and transport mechanisms.

We emphasize that a DAML-S/WSDL grounding involves a complementary use of the two

languages, in a way that is in accord with the intentions of the authors of WSDL. Both languages

are required for the full speci�cation of a grounding, because the two languages do not cover

the same conceptual space. As indicated by Figure 3, the two languages do overlap in the area

of providing for the speci�cation of what WSDL calls \abstract types", which in turn are used

to characterize the inputs and outputs of services. WSDL, by default, speci�es abstract types

using XML Schema, whereas DAML-S allows for the de�nition of abstract types as (description

logic-based) DAML+OIL classes 6. However, WSDL/XSD is unable to express the semantics of a

DAML+OIL class. Similarly, DAML-S has no means, as currently de�ned, to express the binding

information that WSDL captures. Thus, it is natural that a DAML-S/WSDL grounding uses

DAML+OIL classes as the abstract types of message parts declared in WSDL, and then relies on

WSDL binding constructs to specify the formatting of the messages. 7

A DAML-S/WSDL grounding is based upon the following three correspondences between

DAML-S and WSDL. Figure 3 shows the �rst two of these.

1. A DAML-S atomic process corresponds to a WSDL operation. Di�erent types of operations

are related to DAML-S processes as follows:

� An atomic process with both inputs and outputs corresponds to a WSDL request-

response operation.

� An atomic process with inputs, but no outputs, corresponds to a WSDL one-way

operation.

� An atomic process with outputs, but no inputs, corresponds to a WSDL noti�cation

operation.

� A composite process with both outputs and inputs, and with the sending of outputs

speci�ed as coming before the reception of inputs, corresponds to WSDL's solicit-

response operation.8

2. The set of inputs and the set of outputs of a DAML-S atomic process each correspond to

WSDL's concept of message. More precisely, DAML-S inputs correspond to the parts of an

input message of a WSDL operation, and DAML-S outputs correspond to the parts of an

output message of a WSDL operation.

3. The types (DAML+OIL classes) of the inputs and outputs of a DAML-S atomic process

correspond to WSDL's extensible notion of abstract type (and, as such, may be used in

WSDL speci�cations of message parts).

The job of a DAML-S/WSDL grounding is �rst, to de�ne, in WSDL, the messages and

operations by which an atomic process may be accessed, and then, to specify correspondences

(1) and (2). Although it is not logically necessary to do so, we believe it will be useful to specify

these correspondences both in WSDL and in DAML-S. Thus, as indicated in the following, we

allow for constructs in both languages for this purpose.

6.2 Grounding DAML-S Services with WSDL and SOAP

Because DAML-S is an XML-based language, and its atomic process declarations and input

and output types already �t nicely with WSDL, it is easy to extend existing WSDL bindings

for use with DAML-S, such as the SOAP binding. Here, we indicate brie
y how an arbitrary

6The data types of XML Schema can also be used in de�ning DAML+OIL properties.
7The DAML+OIL classes can either be de�ned within theWSDL types section, or de�ned in a separate document

and referred to from within the WSDL description. In the remainder of this exposition, we describe only the latter

approach.
8Since a composite process has no grounding, this construct would be grounded indirectly by means of its

relationship to a simple process (by the collapsesTo property), and hence to an atomic process (by the realizedBy

property). We are considering whether to create a new kind of atomic process in DAML-S, which corresponds

directly to the solicit-response operation.

atomic process, speci�ed in DAML-S, can be given a grounding using WSDL and SOAP, with

the assumption of HTTP as the chosen transport mechanism.

Grounding DAML-S with WSDL and SOAP involves the construction of a WSDL service de-

scription with all the usual parts (message, operation, port type, binding, and service constructs),

except that the types element can normally be omitted. DAML-S extensions are introduced as

follows:

1. In each part of the WSDL message de�nition, the daml-s-parameter attribute is used to

indicate the fully quali�ed name of the DAML-S input or output property, to which this

part of the message corresponds. From the property name, the appropriate DAML range

class { the class of object that this message part will contain { can easily be obtained.

2. In each WSDL operation element, the daml-s-process attribute is used to indicate the name

of the DAML-S atomic process, to which the operation corresponds.

3. Within the WSDL binding element, the encodingStyle attribute is given a value such as

\http://www.daml.org/2001/03/daml+oil.daml", to indicate that the message parts will be

serialized in the normal way for class instances of the given types, for the speci�ed version

of DAML.

Note that WSDL already allows for the use of arbitrary new attributes in message part

elements, and for the use of arbitrary values for the encodingStyle attribute. Thus, extension (2)

above is the only point on which a modi�cation to the current WSDL speci�cation is called for.

6.3 The Grounding Class

We have shown how WSDL may be used to ground a DAML-S atomic process, in particular,

how WSDL may be used to specify the correspondence between a DAML-S atomic process and a

WSDL operation, as well as the correspondences between the process' inputs (or outputs) and a

WSDL message. Thus far, however, we have only shown how WSDL de�nitions may refer to the

corresponding DAML-S declarations. It remains to establish a mechanism by which the relevant

WSDL constructs may be referenced in DAML-S. The DAML-S WsdlGrounding class, a subclass

of Grounding, serves this purpose.

A WsdlGrounding object refers to speci�c elements within the WSDL speci�cation, using

the following properties:

� wsdlReference: A URI that indicates the version of WSDL in use.

� otherReference: A URI indicating a standards document employed by the WSDL code (e.g.,

SOAP, HTTP, MIME).

� wsdlDocument : A URI of a WSDL document to which this grounding refers.

� wsdlOperation: The URI of the WSDL operation corresponding to the given atomic process.

� wsdlInputMessage: An object containing the URI of the WSDL message de�nition that

carries the inputs of the given atomic process, and a list of mapping pairs, which indicate

the correspondence between particular DAML-S input properties and particular WSDL

message parts.

� wsdlOutputMessage: Similar to wsdlInputMessage, but for outputs.

Additional explanation and examples of how to specify groundings are given in an online

document [11].

6.4 Limitations of this Approach

The approach described above is adequate to cover only certain cases, in which the correspon-

dences between DAML-S constructs and WSDL constructs are relatively straightforward. It relies

on the following assumptions:

1. A single atomic process corresponds to a single WSDL operation.

2. Each atomic process input and output corresponds to a WSDL message part.

3. The type of each WSDL message part can be speci�ed as the range of a DAML-S parameter;

that is, it is either a DAML+OIL class or an acceptable XML Schema datatype (an XML

Schema datatype that's permitted for use in DAML+OIL).

Informally, this last assumption says that the current approach works with WSDL operations

that are \native speakers" of DAML+OIL | that is, are prepared to parse inputs and outputs

that are of types speci�ed in the corresponding DAML-S declarations. The impact of this last

assumption is unclear at present; however, the current DAML+OIL spec leaves it unresolved as

to what datatypes are acceptable: \The question of whether any XML Schema datatype can be

used in such constructions, or whether only certain XML Schema dataypes can be so used (such

as only the prede�ned datatypes), remains open" [9]. Depending on the resolution of this issue,

assumption (3) may or may not be a serious constraint.

The impact of assumption (2) is, roughly speaking, that this approach is most likely to work

well when either the DAML-S spec or the WSDL spec (or both) are created with prior knowledge

of the other. However, one can certainly imagine cases where it would be useful to correlate

a DAML-S service and a WSDL service, created independently of one another, and structured

in a way that violates assumption (2). We intend to enable such cases in subsequent releases

of DAML-S, by extending the current approach. These cases will require a more comprehensive

technique of specifying correspondences between DAML-S atomic process inputs/outputs (or their

components) and elements within an XSD de�nition. This technique will allow for assumptions

(2) (and (3), if necessary) to be relaxed. The importance of relaxing assumption (1) is less clear

at present.

There is also an unresolved issue having to do with DAML-S atomic processes that make use

of conditional outputs, that is, that specify two or more possible sets of outputs. Because WSDL

1.1 allows only a single output message speci�cation for a given operation, and because DAML-S'

treatment of conditional outputs is expected to evolve further, this issue has been left unresolved

in the current release (DAML-S 0.7).

7 Resources

Services are e�ected by processes and processes generally require resources. Therefore, an ontol-

ogy of resources is an important component of an ontology of services. Our aim here is to propose

an ontology of resources stated at an abstract enough level to cover physical, temporal, compu-

tational, and other sorts of resources. Speci�c kinds of resources will, of course, have speci�c

properties; in this development we sketch out the principal classes of properties a resource might

have. The DAML-S �le Resource.daml contains a version of the portions of the ontology that can

currently be encoded in DAML+OIL. As DAML develops, particularly in the area of expressing

rules, the various constraints on concepts in the ontology will be written up in DAML as well.

First of all, a distinction must be pointed out. There are resource types, such as fuel. There

are resource tokens, such as the fuel in the gas tank of a particular car. And there is the quantity,

or capacity, of the resource token at any given instant, such as the �ve gallons of fuel in the

car's tank right now. We are primarily interested in the second of these notions. Resources in

this sense can, depending on resource type, be consumed, replenished, locked, and released. A

resource token, or simply resource, is what is available to an activity.

7.1 Allocation Types

Resources are allocated to activities or processes. A principal distinction in types of resources

concerns their status after the activity stops using them. We will call this the resource's Allo-

cationType. If a resource is gone after it is used, its AllocationType is ConsumableAllocation. If

not, its AllocationType is ReusableAllocation.

Examples of reusable resources are the use of a device, the availability of an agent, the use

of a region of space, and the use of bandwidth. (These could be viewed as consumable uses of

the cross product of the resource (e.g., space) with time, but they are easily decomposed into

the resource and time, where only time is consumed.) A persistent resource can be locked and

released. When it is locked, it cannot be used by another agent.

Examples of consumable resources are food, charge in a battery, fuel, money, and time. Con-

sumable resources can sometimes be replenished after they are consumed. A deadline is an indirect

constraint on the consumable resource of time.

Many resources, such as food, are perishable. We can view this case as having two processes

operating on the resource { one functional and relatively rapid, one dysfunctional and relatively

slow. Thus, eating food is functional, food spoiling is dysfunctional, and eating is rapid relative

to spoiling.

Preconditions on processes can often be viewed as the availability of some resource. Many

processes have a location precondition or, more generally, an access precondition. Permission

would be an example. In general, if a process is executed as a precondition to another process,

we can view its product (or its having been done) as a resource. Something being in the right

location for a process's execution can thus be seen as a resource.

7.2 Capacity Types

Resources generally have a precise quantitative measure of capacity at any given instant of time.

(Enthusiasm is an interesting limiting case { it is a consumable resource that can be replenished

and is required for many tasks, but it cannot be measured precisely. Attention is a similar

resource.)

The quantitative measure might be continuous, such as the quantity of fuel. Or it could be

a discrete measure, such as a number of chairs occupied. Thus, a resource has a CapacityType,

where the two CapacityTypes are DiscreteCapacity and ContinuousCapacity.

Capacity can be related to various other resource-theoretic predicates. In the following rules,

for future incorporation into the DAML ontology, R stands for a resource, A for an activity, T

for a time interval, and t for a time instant. The expression use(A,R,T/t) means that activity A

uses resource R over time interval T or for time instant t. The expression capacity(R,T/t) refers

to the capacity of resource R over time interval T or for time instant t.

The capacity of a persistent resource at the beginning of its use is the same as at the end.

reusable(R) & use(A;R; T)) capacity(R; start(T)) = capacity(R; end(T))

The quantity of a consumable resource at the beginning of its use is more than at the end.

consumable(R) & use(A;R; T)) capacity(R; start(T)) > capacity(R; end(T))

When an agent replenishes a resource during period T, there is more after the replenishment.

replenish(A;R; T)) capacity(R; start(T)) < capacity(R; end(T))

When a reusable resource is used for period T, it is locked at the beginning of T and released

at the end.

reusable(R) & use(A;R; T)) lock(A;R; start(T)) & release(A;R; end(T))

Capacities of resources can also have a capacityGranularity, that is, the units in terms of which

the capacity is measured.

7.3 Resource Composition

A resource can be atomic, or it can be an aggregate. Thus, AtomicResource andAggregateResource

are subclasses of Resource.

Some atomic resources can be shared by di�erent activities, while others cannot. For example,

several activities may need a table but can in fact use the same table. We thus distinguish

between unit capacity atomic resources, whose availability to an activity is a yes-no question, and

batch capacity atomic resources, which can support multiple activities in a synchronized fashion.

UnitCapacityResource and BatchCapacityResource are subclasses of AtomicResource.

Aggregates can be conjunctive or disjunctive. For conjunctive aggregates, all the elements

must be allocated to the activity. For a disjunctive aggregate a subset of the elements in the

aggregate can be allocated. An example of a disjunctive resource is a process that requires any 3

adjacent chairs of 100 chairs in a room. Thus, ConjunctiveAggregateResource and DisjunctiveAg-

gregateResource are subclasses of AggregateResource.

Shareable resources should be understood in terms of batch capacity resources and aggrega-

tion.

A very important use of an ontology of resources could be in a monotonic version of \negation

as failure" in DAML-L. In this view, \not P" would not be negation as failure. Rather one would

use the predicate \cant�nd(P,R)" where R is some indication of the resources to devote to the

search for a proof of P. For example, R could then be a list or description of Web resources, a

certain number of inference steps, or a certain amount of time.

8 Summary and Current Status

DAML-S is an attempt to provide an ontology, within the framework of the DARPA Agent

Markup Language, for describing Web services. It will enable users and software agents to

automatically discover, invoke, compose, and monitor Web resources o�ering services, under

speci�ed constraints.

This technical overview accompanies a third prerelease of DAML-S, version 0.7. The pre-

release materials can be found at http://www.daml.org/services/. The Status page on this site

gives additional information about limitations and incomplete aspects of the current release, and

directions leading toward a version 1.0.

We expect to enhance DAML-S in the future in ways that we have indicated in this white

paper, and in response to users' experience with it. We believe it will help make the Semantic

Web a place where people can not only �nd information but also get things done.

References

[1] T. Berners-Lee, J. Hendler, and O. Lassila. The Semantic Web. Scienti�c American, 284(5):34{43,

2001.

[2] E. Christensen, F. Curbera, G. Meredith, and S. Weerawarana. Web Services Description Language

(WSDL) 1.1. http://www.w3.org/TR/2001/NOTE-wsdl-20010315, 2001.

[3] DAML-S Home Page. http://www.daml.org/services/, 2002.

[4] M. Dean, D. Connolly, F. van Harmelen, J. Hendler, I. Horrocks, D. L. McGuinness,

P. F. Patel-Schneider, and L. A. Stein. OWL Web Ontology Language 1.0 Reference.

http://www.w3.org/TR/owl-ref/, July 2002.

[5] K. Decker, K. Sycara, and M. Williamson. Middle-agents for the Internet. In IJCAI97, 1997.

[6] T. Finin, Y. Labrou, and J. May�eld. KQML as an Agent Communication Language. In J. Bradshaw,

editor, Software Agents. MIT Press, Cambridge, 1997.

[7] M. Ghallab et al. PDDL-The Planning Domain De�nition Language V. 2. Technical Report, report

CVC TR-98-003/DCS TR-1165, Yale Center for Computational Vision and Control, 1998.

[8] J. Hendler and D. L. McGuinness. DARPA Agent Markup Language. IEEE Intelligent Systems,

15(6):72{73, 2001.

[9] Joint US/EU ad hoc Agent Markup Language Committee. Reference description of the DAML+OIL

(March 2001) ontology markup language. http://www.daml.org/2001/03/reference, March 2001.

[10] H. Levesque, R. Reiter, Y. Lesperance, F. Lin, and R. Scherl. GOLOG: A Logic programming language

for dynamic domains. Journal of Logic Programming, 31(1-3):59{84, April-June 1997.

[11] D. Martin, M. Burstein, O. Lassila, M. Paolucci, T. Payne, and S. McIlraith. Describing Web Ser-

vices using DAML-S and WSDL. http://www.daml.org/services/daml-s/0.7/daml-s-wsdl.html, Au-

gust 2002.

[12] D. Martin, A. Cheyer, and D. Moran. The Open Agent Architecture: A Framework for Building

Distributed Software Systems. Applied Arti�cial Intelligence, 13(1-2):92{128, 1999.

[13] S. McIlraith, T. C. Son, and H. Zeng. Mobilizing the Web with DAML-Enabled Web Service. In Proc.

Second Int'l Workshop Semantic Web (SemWeb'2001), 2001.

[14] S. McIlraith, T. C. Son, and H. Zeng. Semantic Web Service. IEEE Intelligent Systems, 16(2):46{53,

2001.

[15] J. Meseguer. Conditional Rewriting Logic as a Uni�ed Model of Concurrency. Theoretical Computer

Science, 96(1):73{155, 1992.

[16] R. Milner. Communicating with Mobile Agents: The pi-Calculus. Cambridge University Press,

Cambridge, 1999.

[17] S. Narayanan. Reasoning About Actions in Narrative Understanding. In Proc. International Joint

Conference on Arti�cial Intelligence (IJCAI'1999), pages 350{357. Morgan Kaufmann Press, San

Francisco, 1999.

[18] C. Schleno�, M. Gruninger, F. Tissot, J. Valois, J. Lubell, and J. Lee. The Process Speci�cation Lan-

guage (PSL): Overview and Version 1.0 Speci�cation. NISTIR 6459, National Institute of Standards

and Technology, Gaithersburg, MD, 2000.

[19] K. Sycara and M. Klusch. Brokering and Matchmaking for Coordination of Agent Societies: A Survey.

In A. Omicini et al, editor, Coordination of Internet Agents. Springer, 2001.

[20] K. Sycara, M. Klusch, S. Wido�, and J. Lu. Dynamic Service Matchmaking Among Agents in Open

Information Environments. ACM SIGMOD Record (Special Issue on Semantic Interoperability in

Global Information Systems), 28(1):47{53, 1999.

[21] H.-C. Wong and K. Sycara. A Taxonomy of Middle-agents for the Internet. In ICMAS'2000, 2000.

