Introduction to DAML-S Groundings

June 2, 2002

This white paper accompanies DAML-S draft release 0.6, and explains how DAML-S atomic
processes may be “grounded” in WSDL declarations. This material is meant to be read in con-
nection with the DAML-S 0.6 Technical Overview, and assumes prior knowledge of the concepts
introduced there, particularly in the description of atomic processes, and the high-level charac-
terization of groundings. In future releases of DAMIL-S, this material will be incorporated within
the Technical Overview.

1 Grounding a Service to a Concrete Realization

The grounding of a service specifies the details of how to access the service — details having mainly
to do with protocol and message formats, serialization, transport, and addressing. A grounding
can be thought of as a mapping from an abstract to a concrete specification of those service
description elements that are required for interacting with the service; in particular, for our pur-
poses, the inputs and outputs of atomic processes. Note that in DAML-S, both the ServiceProfile
and the ServiceModel are thought of as abstract representations; only the ServiceGrounding deals
with the concrete level of specification.

DAML-S does not include an abstract construct for describing messages. Rather, the abstract
content of a message is specified, implicitly, by the input or output properties of some atomic
process. Thus, atomic processes, in addition to specifying the basic actions from which larger
processes are composed, can also be thought of as the communication primitives of an (abstract)
process specification.

Concrete messages, however, are specified explicitly in a grounding. The central function of
a DAML-S grounding is to show how the (abstract) inputs and outputs of an atomic process
are to be realized concretely as messages, which carry those inputs and outputs in some specific
transmittable format. Due to the existence of a significant body of work in the area of concrete
message specification, which is already well along in terms of industry adoption, we have chosen to
make use of the Web Services Description Language (WSDL), a particular specification language
proposal with strong industry backing, and which we view as represenative of such efforts, in
crafting an initial grounding mechanism for DAML-S.

Web Services Description Language (WSDL) “is an XML format for describing network
services as a set of endpoints operating on messages containing either document-oriented or
procedure-oriented information. The operations and messages are described abstractly, and then
bound to a concrete network protocol and message format to define an endpoint. Related concrete
endpoints are combined into abstract endpoints (services). WSDL is extensible to allow descrip-
tion of endpoints and their messages regardless of what message formats or network protocols are
used to communicate” [1].

DAML-S

Process Model DL-Based Types
JX Sl et s‘
1 Atomic Process Inputs / Outputs '
: .
' Operation Message E
" ® .
. :
N Binding to SOAP, HTTP, etc. '
H pmmmmmmm=—— . .
Semmmmaaaaaa « WSDL Ymmmmmmmamaas ‘

Figure 1: Mapping between DAML-S and WSDL

It may readily be observed that DAML-S’ concept of grounding is generally consistent with
WSDL’s concept of binding. Indeed, by using the extensibility elements already provided by
WSDL, along with one new extensibility element proposed here, it is an easy matter to ground a
DAML-S atomic process. In this section, we show how this may be done, relying on the WSDL
1.1 specification.

1.1 Relationships Between DAML-S and WSDL

The approach described here allows a service developer, who is going to provide service descrip-
tions for use by potential clients, to take advantage of the complementary strengths of these two
specification languages. On the one hand (the abstract side of a service specification), the devel-
oper benefits by making use of DAML-S’ process model, and the expressiveness of DAML+OIL’s
class typing mechanisms, relative to what XML Schema provides. On the other hand (the concrete
side), the developer benefits from the opportunity to reuse the extensive work done in WSDL
(and related languages such as SOAP), and software support for message exchanges based on
these declarations, as defined to date for various protocols and transport mechanisms.

We emphasize that a DAML-S/WSDL grounding involves a complementary use of the two
languages, in a way that is in accord with the intentions of the authors of WSDL. Both languages
are required for the full specification of a grounding. This is because the two languages do not
cover the same conceptual space. As indicated by figure 1, the two languages do overlap in the
area of providing for the specification of what WSDL calls “abstract types”, which in turn are
used to characterize the inputs and outputs of services. WSDL, by default, specifies abstract types
using XML Schema, whereas DAML-S allows for the definition of abstract types as (description
logic-based) DAML+OIL classes !. However, WSDL/XSD is unable to express the semantics of a
DAMLAOIL class. Similarly, DAMIL-S has no means, as currently defined, to express the binding
information that WSDL captures. Thus, it is natural that a DAML-S/WSDL grounding uses
DAMLAHOIL classes as the abstract types of message parts declared in WSDL, and then relies on
WSDL binding constructs to specify the formatting of the messages. 2

A DAML-S/WSDL grounding is based upon the following three correspondences between
DAML-S and WSDL. Figure 1 shows the first two of these.

!The primitive types of XML Schema can also be used in defining DAML4OIL properties.

2The DAML+OIL classes can either be defined within the WSDL types section, or defined in a separate document
and referred to from within the WSDL description. In the remainder of this exposition, we describe only the latter
approach.

1. A DAML-S atomic process corresponds to a WSDL operation. Different types of operations
are related to DAML-S processes as follows:

e An atomic process with both inputs and outputs corresponds to a WSDL request-
response operation.

e An atomic process with inputs, but no outputs, corresponds to a WSDL one-way
operation.

e An atomic process with outputs, but no inputs, corresponds to a WSDL notification
operation.

e A composite process with both outputs and inputs, and with the sending of outputs
specified as coming before the reception of inputs, corresponds to WSDL’s solicit-
response operation.3

2. The set of inputs and the set of outputs of a DAML-S atomic process each corresponds to
WSDL’s concept of message. More precisely, DAML-S inputs correspond to the parts of an
input message of a WSDL operation, and DAML-S outputs correspond to the parts of an
output message of a WSDL operation.

Note that WSDL allows (at most) one input, and (at most) one output message to be
associated with an operation. This is in accord with a decision made independently, in
DAML-S, that a grounding must map all inputs to (at most) a single message, and similarly
for outputs.

3. The types (DAML++OIL classes) of the inputs and outputs of a DAML-S atomic process
correspond to WSDL’s extensible notion of abstract type (and, as such, may be used in
WSDL specifications of message parts).

The job of a DAML-S/WSDL grounding is first, to define, in WSDL, the messages and
operations by which an atomic process may be accessed, and then, to specify correspondences
(1) and (2). Although it is not logically necessary to do so, we believe it will be useful to specify
these correspondences both in WSDL and in DAML-S. Thus, as indicated in the following, we
allow for constructs in both languages for this purpose.

1.2 Grounding DAML-S Services With WSDL and SOAP

Because DAML-S is an XML-based language, and its atomic process declarations and input /output
types already fit nicely with WSDL, it is easy to extend existing WSDL bindings for use with
DAML-S, such as the SOAP binding. In this subsection, we indicate briefly how an arbitrary
atomic process, specified in DAML-S, can be given a grounding using WSDL and SOAP, with
the assumption of HTTP as the chosen transport mechanism.

Grounding DAML-S with WSDL and SOAP involves the construction of a WSDL service de-
scription with all the usual parts (message, operation, port type, binding, and service constructs),
except that the fypes element can normally be omitted. DAMIL-S extensions are introduced as
follows:

3Since a composite process has no grounding, this construct would be grounded indirectly by means of its
relationship to a simple process (by the collapse property), and hence to an atomic process (by the realizedBy
property), as described in the Technical Overview. We are considering whether to create a new kind of atomic
process in DAML-S, which corresponds directly to the solicit-response operation.

1. In each part of the WSDL message definition, the daml-property attribute is used to indicate
the fully-qualified name of the DAML-S input or output property, to which this part of the
message corresponds. From the property name, the appropriate DAML range class — the
class of object which this message part will contain — can easily be obtained.

2. In each WSDL operation element, the daml-s-process attribute is used to indicate the name
of the DAML-S atomic process, to which the operation corresponds.

3. Within the WSDL binding element, the encodingStyle attribute is given a value such as
“http://www.daml.org/2001/03/daml+oil.daml”, to indicate that the message parts will be
serialized in the normal way for class instances of the given types, for the specified version
of DAML.

Note that WSDL already allows for the use of arbitrary new attributes in message part
elements, and for the use of arbitrary values for the encodingStyle attribute. Thus, extension (2)
above is the only point on which a modification to the current WSDL specification is called for.

1.3 The Grounding Class

We have shown how WSDL may be used to ground a DAML-S atomic process; in particular,
how WSDL may be used to specify the correspondence between a DAML-S atomic process and a
WSDL operation, as well as the correspondences between the process’ inputs (or outputs) and a
WSDL message. Thus far, however, we have only shown how WSDL definitions may refer to the
corresponding DAML-S declarations. It remains to establish a mechanism by which the relevant
WSDL constructs may be referenced in DAML-S. The DAML-S WsdIGrounding class, a subclass
of Grounding, serves this purpose.

A WsDLGROUNDING object refers to specific elements within the WSDL specification, using
the following properties:

o wsdlReference: A URI that indicates the version of WSDL in use.

e otherReferences: A list of URIs indicating other relevant standards employed by the WSDL
code (e.g., SOAP, HTTP, MIME).

e wsdlDocuments: A list of the URIs of the WSDL document(s) that give the grounding.
e wsdlOperation: The URI of the WSDL operation corresponding to the given atomic process.

o wsdlInputMessage: An object containing the URI of the WSDL message definition that
carries the inputs of the given atomic process, and a list of mapping pairs, which indicate
the correspondence between particular DAML-S input properties and particular WSDL
message parts.

o wsdlOutputMessage: Similar to wsdlInputMessage, but for outputs.

References

[1] E. Christensen, F. Curbera, G. Meredith, and S. Weerawarana. Web Services Description Language
(WSDL) 1.1. http://www.w3.org/TR/2001/NOTE-wsdl-20010315, 2001.

