
Working Paper, version of Nov. 21, 2002

Description Logic Programs: Combining Logic Programs
with Description Logic

Benjamin N. Grosof
MIT Sloan School of Management

Cambridge, MA 02142, USA
http://www.mit.edu/˜bgrosof

bgrosof@mit.edu

Ian Horrocks
University of Manchester

Manchester, UK
http://www.cs.man.ac.uk/˜horrocks

horrocks@cs.man.ac.uk

ABSTRACT
We show how to interoperate, semantically and inferentially, be-
tween the leading Semantic Web approaches to rules (RuleML
Logic Programs) and ontologies (OWL/DAML+OIL Description
Logic) via analyzing their expressive intersection. To do so, we de-
fine a new intermediate knowledge representation (KR) contained
within this intersection: Description Logic Programs (DLP), and
the closely related Description Horn Logic (DHL) which is an ex-
pressive fragment of first-order logic (FOL). DLP provides a signif-
icant degree of expressiveness, substantially greater than the RDF-
Schema fragment of Description Logic.

We show how to perform DLP-fusion: the bidirectional transla-
tion of premises and inferences (including typical kinds of queries)
from the DLP fragment of DL to LP, and vice versa from the DLP
fragment of LP to DL. In particular, this translation enables one to
“build rules on top of ontologies”: it enables the rule KR to have
access to DL ontological definitions for vocabulary primitives (e.g.,
predicates and individual constants) used by the rules. Conversely,
the DLP-fusion technique likewise enables one to “build ontolo-
gies on top of rules”: it enables ontological definitions to be sup-
plemented by rules, or imported into DL from rules. It also enables
available efficient LP inferencing algorithms/implementations to be
exploited for reasoning over large-scale DL ontologies.

Keywords
Semantic Web, rules, ontologies, logic programs, Description
Logic, knowledge representation, XML, RDF, model-theoretic se-
mantics, inferencing, interoperability, translation, information inte-
gration

1. INTRODUCTION
The challenge we address in this paper is how and why to com-

bine rules with ontologies for the Semantic Web (SW). This is a
large topic, on which doubtless many more papers will be written.
In this paper, we focus on meeting a few key requirements, via a
few key initial steps of logical knowledge representation (KR). We
start from the currently leading draft standards for SW ontologies1

1An ontology is a formally specified/defined vocabulary.

Copyright is held by the author/owner(s).

.

(OWL) [6] and for SW rules2 (RuleML).3 We then develop a se-
mantics for combining such rules with such ontologies, based on a
translation between their respective KRs. This semantics exploits
correspondences with classical First Order Logic (FOL). We then
show how this translation semantics supports several important pat-
terns of KR usage, including querying, and discuss how it bestows
a variety of benefits in these. Finally, we point the way to several
interesting directions for future work.

In the remainder of this section and the next, we give in more
detail the motivation and technical overview.

Layering in the Semantic Web Stack: The Semantic Web can be
viewed as largely about “KR meets the Web”. Over the last two
years or so, a broad consensus has evolved in the Semantic Web
community that the vision of the Semantic Web includes, specif-
ically, rules as well as ontologies. A key requirement for the Se-
mantic Web’s architecture overall, then, is to be able to layer rules
on top of ontologies — in particular to create and reason with rule-
bases that mention vocabulary specified by ontological knowledge
bases — and to do so in a semantically coherent and powerful man-
ner. The current version of the W3C’s Semantic Web stack dia-
gram, given in Figure 1, reflects this idea / consensus view.

Figure 1: Semantic web stack diagram, from W3C.

2A fact is a special case of a rule. A relational database, including
its queries, can be viewed as a rulebase.
3Rule Markup Language Initiative http://www.ruleml.org
and http://ebusiness.mit.edu/bgrosof/#RuleML;
see [12] for a relatively recent overview paper.

1

Focus KRs: As an ontology language, we focus on DAML+OIL;
this is based on the particular KR known as Description Logic
(DL)4, and is the point of departure for the recently-formed
W3C Web-Ontology (WebOnt) Working Group, whose current
draft standard is called OWL. OWL is based on a DL very
close to DAML+OIL’s, and is is very similar to DAML+OIL in
many aspects, including in its approach to syntax based on RDF.
However, since OWL is still under active development, while
DAML+OIL is relatively stable, we focus on the particular DL used
in DAML+OIL.

As a rule language, we focus on RuleML; this is based on the par-
ticular KR known as (declarative) logic programs (LP), and is the
leading current standardization approach to rules for the Semantic
Web. RuleML syntax has both an RDF version and a (non-RDF)
XML version (these are semantically the same). In tandem with LP,
we also focus on the (positive) Horn expressive fragment5 of FOL,
which is closely related to the positive Horn expressive fragment of
LP .

Motivation from Semantic Web Services: A task-oriented mo-
tivation for combining RuleML LP rules with OWL/DAML+OIL
DL ontologies arises from the efforts to design and build Semantic
Web Services (SWS). Semantic Web Services are Web Services that
make use of Semantic Web techniques to describe (or implement)
services in a knowledge-based manner. The knowledge-based ser-
vice descriptions may be used for a variety of purposes, includ-
ing: discovery and search; selection, evaluation, negotiation, and
contracting; composition and planning; execution; and monitor-
ing. Efforts to develop Semantic Web Services techniques and to
explore their application scenarios include: the DAML-Services
effort (DAML-S)6, the Web Service Modeling Framework effort
(WSMF)7, SweetDeal e-contracting [13, 19, 14], and ECOIN fi-
nancial knowledge integration [9, 10]. Both the DAML-S and
SweetDeal efforts have specifically identified combining rules with
ontologies as an important requirement. DAML-S began with
DAML+OIL as its main tool for describing services. DAML-S then
identified LP rules as desirable in addition. Interestingly, DAML-
S has identified LP rules as desirable even to specify ontologies,
partly because LP rules are more familiar to mainstream software
engineers than DL is.

2. OVERVIEW OF THE APPROACH
In this section, we give an overview of our approach, and outline

the rest of the paper.
We start with the goal of understanding the relationship between

the two logic based KR formalisms (so as to be able to combine
knowledge taken from both): Description Logics (decidable frag-
ments of FOL closely related to propositional modal and dynamic
logics [20]), and Logic Programs (see, e.g., [2] for review) which in
turn is closely related to the Horn fragment of FOL. We further fo-
cus on def-Horn (a large fragment of Horn FOL), and then go on to
show how both DL and LP are related to def-Horn. Highly efficient
LP reasoning engines can be used to provide reasoning services for
def-Horn.

Our approach is driven by the insight that understanding the ex-
pressive intersection of these two KRs will be crucial to under-
standing the expressive combination/union of the two KRs. We de-

4Actually, “Description Logic” is often used to mean more broadly
a family of variant KRs, of which the one used in DAML+OIL is
just one member. We will define later the precise DL KR upon
which we focus.
5expressive “fragment” means expressive subset or special case
6http://www.daml.org/services
7http://informatik.uibk.ac.at/users/c70385/
wese/index.html

fine a new intermediate KR called Description Horn Logic (DHL),
which is contained within this intersection (and so is also a frag-
ment of FOL), and the closely related Description Logic Programs
(DLP), which can be viewed as DHL with a moderate weakening
of what kind of conclusions can be drawn.

Figure 2: Expressive overlap of DL with LP.

Figure 2 illustrates the relationship between the various KRs and
their expressive classes. DL and Horn are strict (decidable) sub-
sets of FOL. LP, on the other hand, intersects with FOL but neither
includes nor is fully included by FOL. FOL can express (positive)
disjunctions, which are inexpressible in LP. There are, however,
expressive features of LP, frequently used in practical rule-based
applications, that are inexpressible in FOL. One is negation-as-
failure, a basic kind of logical non-monotonicity. Another is proce-
dural attachments, e.g., the association of action-performing proce-
dural invocations with the drawing of conclusions about particular
predicates.

Description Logic Programs, our newly defined intermediate
KR, is contained within the intersection of DL and LP. “Full” LP,
including non-monotonicity and procedural attachments, can thus
be viewed as including an “ontology sub-language”, namely the
DLP subset of DL.

Rather than working from the intersection as we do in this paper,
one may instead directly address the expressive union of DL and
LP by studying the expressive union of DL and Horn within the
overall framework of FOL. This is certainly an interesting thing to
do. However, to our knowledge, this has not yet been well charac-
terized theoretically, e.g., it is unclear how, if at all, such a union
differs from full FOL.

Full FOL has some significant practical and expressive draw-
backs as a KR in which to combine DL and rules. First, full FOL
has severe computational complexity: it is undecidable in the gen-
eral case, and intractable even under the Datalog restriction. Sec-
ond, it is not understood even at a basic research level how to ex-
pressively extend full FOL to provide non-monotonicity and pro-
cedural attachments; yet these are crucial expressive features in
many (perhaps most) practical usages of rules. Third, full FOL
and its inferencing techniques are unfamiliar to the great majority
of mainstream software engineers, whereas rules (e.g., in the form
of SQL-type queries, or Prolog) are familiar conceptually to many
of them. The approach we take in this paper avoids these draw-
backs by avoiding directly tackling the union (of DL and Horn) in
FOL.

DLP provides a significant degree of expressiveness. It is a large
fragment of the intersection of DL and LP/Horn, and includes the
RDF-Schema (RDFS) [4] fragment of DL.

The RDFS fragment of DL permits: stating that a class D is a

2

Subclass of a class E; stating that the Domain of a property P is a
class C; stating that the Range of a property P is a class C; stating
that a property P is a Subproperty of a property Q; stating that an
individual b is an Instance of a class C; and stating that a pair of
individuals (a,b) is an Instance of a property P.

Additional DLP expressively permits (within DL): using the In-
tersection connective (conjunction) within class descriptions (i.e.,
in C, D, or E above); using the Union connective (disjunction)
within subclass descriptions (i.e., in D above); using (a restricted
form of) Universal quantification within superclass descriptions
(i.e., in E above); using (a restricted form of) Existential quan-
tification within subclass descriptions (i.e., in D above); stating
that a property P is Transitive; stating that a property P is Sym-
metric; and stating that a property P is the Inverse of a property
Q. In RDFS, in contrast, the classes (i.e., C, D, E above) are atomic
primitives—they may not have connectives or quantifiers appearing
within them.

Via the DLP KR, we give a new technique to combine DL and
LP. We show how to perform DLP-fusion: the bidirectional map-
ping of premises and inferences (including typical kinds of queries)
from the DLP fragment of DL to LP, and vice versa from the DLP
fragment of LP to DL. We call it “DLP-fusion” because it fuses
the two logical KRs—DL and LP—-so that information from each
can be used in the other. The DLP-fusion technique promises sev-
eral benefits. We say “promises” because we present in this paper
mainly a theoretical basis; development of detailed algorithms and
implementations remain for future work.

In particular, DLP-fusion enables one to “build rules on top of
ontologies”: it enables the rule KR to have access to DL onto-
logical definitions for vocabulary primitives (e.g., predicates and
individual constants) used by the rules. Conversely, the tech-
nique enables one to “build ontologies on top of rules”: it enables
ontological definitions to be supplemented by rules, or imported
into DL from rules. It also enables efficient LP inferencing algo-
rithms/implementations, e.g., rule or relational DBMS8 engines, to
be exploited for reasoning over large-scale DL ontologies.

Organization of Rest of paper: In Section 3, we give formal
preliminaries about DL, Horn, and LP, including typical kinds of
queries in each. In Section 4, we give a semantic mapping, i.e., a
translation from a portion of DL into def-Horn. In Section 5, we
define the resulting fragment of FOL to be DHL, and define DLP as
the corresponding fragment of LP; it is slightly weaker than DHL.
In Section 6, we give some more discussion of the process of trans-
lating between DL, DHL, DLP, and LP. In Section 7, we show how
to combine/inter-operate DL and LP knowledge via a correspon-
dence between the standard inference problems in each KR lan-
guage. Finally, in Section 8, we summarise what has been achieved
so far and discuss directions for future work.

3. PRELIMINARIES
In this section we will introduce Horn Logic, Description Logic

(DL) and the DL based ontology language DAML+OIL. In partic-
ular, we will describe their syntax and formalise their meaning in
terms of classical First Order Logic (FOL).

3.1 DAML+OIL and Description Logic
DAML+OIL is an ontology language designed for use on the

(semantic) web. Although DAML+OIL is syntactically “layered”
on top of RDFS, semantically it is layered on a subset of RDFS.
This subset does not include RDFS’s recursive meta model (i.e.,
the unrestricted use of the type relation), but instead treats RDFS
as a very simple DL supporting only atomic class names. Like other
8Data Base Management Systems, e.g., SQL query answering sys-
tems

Constructor DL Syntax Example
intersectionOf C1 � . . . � Cn Human �Male
unionOf C1 � . . . � Cn Doctor � Lawyer
complementOf ¬C ¬Male
oneOf {i1 . . . in} {john, mary}
hasClass ∃P.C ∃hasChild.Lawyer
toClass ∀P.C ∀hasChild.Doctor
hasValue ∃P.{i} ∃citizenOf.{USA}
minCardinalityQ � n P.C � 2 hasChild.Lawyer
maxCardinalityQ � n P.C � 1 hasChild.Male
cardinalityQ = n P.C =1 hasParent.Female

Figure 4: DAML+OIL class constructors

DLs, this “DAML+OIL subset” of RDFS corresponds to a fragment
of classical FOL, making it much easier to develop mappings to
rule languages as well as to DLs. From now on, when we talk about
RDFS, we will be referring to the DAML+OIL subset of RDFS.

DAML+OIL is equivalent to a very expressive DL—in fact it is
equivalent to the SHOIQ(D) DL [17, 15]. In addition to “ab-
stract” classes and individuals, DAML+OIL also supports the use
of “concrete” datatypes and data values (the (D) in SHOIQ(D)).
In this paper, however, we will restrict our attention to the abstract
part of the language, which corresponds to the SHOIQ DL.

Figure 3 (on page 4) shows how DAML+OIL statements cor-
respond to SHOIQ axioms, where C (possibly subscripted) is a
class, P (possibly subscripted) is a property, P− is the inverse of
P , P+ is the transitive closure of P , i (possibly subscripted) is an
individual and � is an abbreviation for A � ¬A for some class A
(i.e., the most general class, called “Thing” in DAML+OIL).

It can be seen that all DAML+OIL statements can be reduced to
class/property inclusion axioms and ground facts (asserted class-
instance and instance-property-instance relationships).9 In the case
of transitiveProperty, however, the axiom P+ � P is
taken to be equivalent to asserting that P is a transitive property
(like DAML+OIL, SHOIQ does not include the transitive closure
operator).

As in any DL, DAML+OIL classes can be names (URIs) or ex-
pressions, and a variety of constructors are provided for building
class expressions. Figure 4 summarises the available constructors
and their correspondence with SHOIQ class expressions.

Formally, SHOIQ is built over a signature of distinct sets of
class (CN), property (RN) and individual (O) names.10 The set of
all SHOIQ properties is equal to the set of property names RN
union the set of the inverse properties {R− | P ∈ RN}. In addi-
tion, we distinguish simple properties, where a simple property is a
SHOIQ property that is neither transitive, nor has any transitive
sub-properties, and whose inverse is also a simple property.

The set of all SHOIQ classes is the smallest set such that every
class name in CN and the symbols �, ⊥ are classes, and if C,D
are classes, i is an individual name from O, R is a property, S is a
simple property and n an integer, then ¬C, {i}, (C�D), (C�D),
(∀R.C), (∃R.C), � n S.C, and � n S.C are classes.

The semantics of SHOIQ is given by interpretations, where an
interpretation I = (∆I , ·I) consists of a nonempty domain ∆I

and a interpretation function ·I . The interpretation function maps
classes into subsets of ∆I , individual names into elements of ∆I ,
and property names into subsets of the cartesian product of ∆I

9Equivalence axioms can be reduced to a symmetrical pair of in-
clusion axioms.

10What DAML+OIL calls classes and properties are normally called
concepts and roles in a DL, but to avoid confusion we will use class
and property throughout this paper.

3

Axiom DL Syntax Example
subClassOf C1 � C2 Human � Animal � Biped
sameClassAs C1 ≡ C2 Man ≡ Human �Male
subPropertyOf P1 � P2 hasDaughter � hasChild
samePropertyAs P1 ≡ P2 cost ≡ price
disjointWith C1 � ¬C2 Male � ¬Female
sameIndividualAs {i1} ≡ {i2} {President Bush} ≡ {G W Bush}
differentIndividualFrom {i1} � ¬{i2} {john} � ¬{peter}
inverseOf P1 ≡ P−

2 hasChild ≡ hasParent−

transitiveProperty P+ � P ancestor+ � ancestor
uniqueProperty � � � 1 P.� � � � 1 hasMother.�
unambiguousProperty � � � 1 P−.� � � � 1 isMotherOf−.�
range � � ∀P.C � � ∀hasParent.Human
domain � � ∀P−.C � � ∀hasParent−.Human
itypeC i : C john : Man
i1 P i2 〈i1, i2〉 : P 〈john, peter〉 : hasParent

Figure 3: DAML+OIL statements and SHIQ axioms

(∆I×∆I). Compound class expressions are interpreted according
to the following equations (see [21])

�I = ∆I (C �D)I = CI ∩DI

⊥I = ∅ (C �D)I = CI ∪DI

¬CI = ∆I \ CI {i}I = {iI}
(∀R.C)I = {x ∈ ∆I | ∀y(x, y) ∈ RI ⇒ y ∈ CI}
(∃R.C)I = {x ∈ ∆I | ∃y(x, y) ∈ RI ∧ y ∈ CI}

(� n R.C)I = {x ∈ ∆I | �{y | (x, y) ∈ RI ∧ y ∈ CI} ≥ n}
(� n R.C)I = {x ∈ ∆I | �{y | (x, y) ∈ RI ∧ y ∈ CI} ≤ n}

A property and its inverse must be interpreted according to the
equation

(R−)I = {(x, y) ∈ ∆I ×∆I | (y, x) ∈ RI}.

In addition, the interpretation function must satisfy the transitive
restriction on property names; i.e., for any R ∈ T RN if (x, y) ∈
RI and (y, z) ∈ RI , then (x, z) ∈ RI .

Axioms C � D, i : C, 〈i1, i2〉 : R and R � R′ are satisfied by
an interpretation I iff respectively CI ⊆ DI , iI ∈ CI , (iI1 , iI2) ∈
RI and RI � R′I ; an ontology O is satisfied by I iff I satisfies
every axiom in O; C � D, i : C and 〈i1, i2〉 : R w.r.t. O iff
respectively CI ⊆ DI , iI ∈ CI and (iI1 , iI2) ∈ RI in every
interpretation I of O.

The meaning of SHOIQ can also be seen in terms of a corre-
spondence to FOL, where classes correspond to unary predicates
(predicates of arity 1), properties correspond to binary predicates
(predicates of arity 2), and subclass/property axioms correspond to
implication [7, 3].

To be more precise, individuals are equivalent to FOL constants,
classes and class expressions are equivalent to FOL formulae with
one free variable, and properties (and property expressions when
supported by the DL) are equivalent to FOL formulae with two free
variables. Class and property inclusion axioms are equivalent to
FOL sentences consisting of an implication between two formulae
with the free variables universally quantified at the outer level. E.g.,
a DL axiom of the form C � D is equivalent to a FOL sentence
of the form ∀x.C(x) → D(x). DL axioms of the form a : C and
〈a, b〉 : P correspond to ground atoms C(a) and P (a, b). Finally,
DL axioms asserting the transitivity of a property P , the function-
ality of a property P and that property Q is the inverse of property
P are equivalent to FOL sentences of the form ∀x, y, z.(P (x, y)∧
P (y, z)) → P (x, z), ∀x, y, z.(P (x, y) ∧ P (x, z)) → y = z and
∀x, y.P (x, y) ⇐⇒ Q(y, x) respectively.

DL FOL
a : C C(a)
〈a, b〉 : P P (a, b)
C � D ∀x.C(x)→ D(x)
P+ � P ∀x, y, z.(P (x, y) ∧ P (y, z))→ P (x, z)
� � � 1 P ∀x, y, z.(P (x, y) ∧ P (x, z))→ y = z
P ≡ Q− ∀x, y.P (x, y) ⇐⇒ Q(y, x)

C1 � . . . � Cn C1(x) ∧ . . . ∧ Cn(x)
C1 � . . . � Cn C1(x) ∨ . . . ∨ Cn(x)
¬C ¬C(x)
{a1, . . . , an} x = a1 ∨ . . . ∨ x = an

∃P.C ∃y.(P (x, y) ∧ C(y))
∀P.C ∀y..(P (x, y)→ C(y))
� n P.C ∃y1, . . . , yn.

∧
1�i�n(P (x, yi) ∧ C(yi))

∧
∧

1�i<n,i<j�n yi �= yj

� (n− 1) P.C ∀y1, . . . , yn.(
∧

1�i�n(P (x, yi) ∧ C(yi)))

→ (
∨

1�i<n,i<j�n yi = yj)

Figure 5: DL FOL equivalence

Figure 5 summarises the above equivalences and shows the FOL
formulae corresponding to the DL class expressions described in
Figure 4, where a, b are constants, and x is the free variable. These
formulae can be composed in the obvious way, e.g., ∃R.(C�D) ≡
∃y.(P (x, y) ∧ (C(y) ∧D(y))).

As a notational convention we will, throughout the paper, use a
and b for constants and w, x, y and z for variables.

3.2 Logic Programs and Horn FOL
Declarative logic programs (LP)11 is the KR whose semantics

underlies RuleML and, in large part, the four families of rule sys-
tems that are currently most commercially important — SQL re-
lational databases, OPS5-heritage production rules, Prolog, and
Event-Condition-Action rules. As we mentioned earlier, it is our
focus KR for rules.

The commonly used expressiveness of full LP includes features,
notably negation-as-failure/priorities and procedural attachments,
that are not expressible in FOL — much less in DL. We thus con-
centrate on only an expressive portion of LP.

11see, e.g., [2] for a review

4

An ordinary (a.k.a. “normal”12) LP is a set of rules each having
the form:

H ← B1 ∧ . . . ∧Bm ∧ ∼Bm+1 ∧ . . . ∧ ∼Bn
where H , Bi are atoms (atomic formulae), and n ≥ m ≥ 0. Note
that no restriction is placed on the arity of the predicates appearing
in these atoms. Logical variables, and logical functions (with any
arity), may appear unrestrictedly in these atoms.

H is called the head (a.k.a. consequent) of the rule;
B1 ∧ . . . ∧ Bm ∧ ∼Bm+1 ∧ . . . ∧ ∼Bn

is called the body (a.k.a. antecedent) of the rule. ← is to be read
as “if”, so that the overall rule should be read as “[head] if [body]”,
i.e., “if [body] then [head]”. If n = 0, then the body is empty, i.e.,
True, and notationally the “ ← ” is often omitted. A fact is a
rule whose body is empty and whose head is a ground atom. ∼
stands for negation-as-failure, a logically non-monotonic form of
negation whose semantics differs, in general, significantly from the
semantics of classical negation (¬). Intuitively, ∼Bi means “Bi is
not believed” (i.e., is unknown or false), whereas ¬ means “Bi is
false”. Intuitively, each rule can be viewed as universally quanti-
fied at the outer level. More precisely, each rule can be viewed as
standing for the set of all its ground instantiations.

A definite LP is an ordinary LP in which negation-as-failure does
not appear, i.e., a set of rules each having the form:

H ← B1 ∧ . . . ∧Bm

where H , Bi are atoms, and m ≥ 0.
Definite LP is closely related syntactically and semantically to

the Horn fragment of FOL, a.k.a. Horn-clause logic. A clause in
FOL has the form:

L1 ∨ . . . ∨ Lk

where each Li is a (classical) literal. A literal L has either the form
(1) A or (2) ¬A, where A is an atom. The literal is said to be pos-
itive in case (1), or to be negative in case (2). A clause is said to
be Horn when at most one of its literals is positive. A Horn clause
is said to be definite when exactly one of its literals is positive. A
definite Horn clause is also known as a Horn rule. A definite Horn
clause, a.k.a. Horn rule, can thus be written in the form:

H ← B1 ∧ . . . ∧Bm

where H , Bi are atoms, and m ≥ 0. We say that this Horn
rule corresponds to the definite LP rule that has the same syn-
tactic form, and vice versa. Likewise, we say that a Horn ruleset
RH and a definite LP ruleset RP correspond to each other when
their rules do (isomorphically). We then also say that RP is the
LP-correspondent of RH, and conversely that RH is the Horn-
correspondent ofRP .

As mentioned above, it is implicit in this notation that all logical
variables are universally quantified at the outer level, i.e., over the
scope of the whole clause. E.g., the rule

man(x) ← human(x) ∧ male(x)
can be written equivalently as:
∀x. man(x) ← human(x) ∧ male(x).

Note the similarity with the FOL equivalent of a DL inclusion (sub-
ClassOf) axiom given in Figure 5.

An LP rule or Horn clause is said to be equality-free when the
equality predicate does not appear in it. Likewise, each is said to
be Datalog when no logical functions (of arity greater than zero)
appear in it.

The semantics of an ordinary LP is defined to be a conclusion set,
where each conclusion is a ground atom13, i.e., fact, entailed by the
LP. Note that we (cf. RuleML) adopt the well-founded semantics14

12[2] call this “general”; however, there are actually a number of
frequently used extensions!

13in the LP literature, this conclusion set is often called its “model”
14There are several other proposed semantics for LP (e.g., the stable
semantics) which differ for cases where negation-as-failure inter-
acts complexly with recursive (cyclic) dependencies (through the

for LP. Formally, the semantics of a definite LP R is defined as
follows. Let HB stand for the Herbrand base of R. The conclusion
set C is the smallest (w.r.t. set inclusion) subset S of HB such that
for any rule

H ← B1 ∧ . . . ∧ Bm,
if B1 ∧ . . . ∧Bm ∈ S then H ∈ S .

The relationship of LP semantics to FOL semantics is relatively
simple to describe for the case of definite equality-free Datalog LP,
which we call def-LP. The syntactically corresponding fragment of
FOL is definite equality-free Datalog Horn FOL, which we call def-
Horn. Let RP be a def-LP. Let RH stand for the corresponding
def-Horn ruleset. The conclusion set of RP then coincides with
the smallest (again, w.r.t. set inclusion) Herbrand model ofRH.

Next, we discuss this relationship. The def-LP and the def-Horn
ruleset entail exactly the same set of facts. Every conclusion of the
def-LP is also a conclusion of the def-Horn ruleset. Relative to the
def-Horn ruleset, the def-LP is thus sound; moreover, it is complete
for fact-form conclusions, i.e., for queries whose answers amount
to conjunctions of facts. However, the def-LP is a mildly weaker
version of the def-Horn ruleset, in the following sense. Every con-
clusion of the def-LP must have the form of a fact. By contrast,
the entailments, i.e., conclusions, of the def-Horn ruleset are not
restricted to be facts. E.g., suppose RH consists of the two rules

kiteDay(Tues) ← sunny(Tues) ∧ windy(Tues)
and

sunny(Tues).
Then it entails

kiteDay(Tues) ← windy(Tues)
(a non-unit derived clause) whereas RP does not. In practical ap-
plications, however, quite often only the fact-form conclusions are
desired — e.g., an application might be interested above only in
whether or not kiteDay(Tues) is entailed. The def-LP has the
virtue of conceptual and computational simplicity. To use an anal-
ogy, like a hard-boiled detective from a mid-century cop story, it
says “give me the facts, ma’am, just the facts”. Thinking in terms
of expressive classes, we will view def-LP as an expressive sub-
set of def-Horn— we will call it the expressive f-subset. def-LP is
a mild weakening of def-Horn along the dimension of entailment
power, permitting only fact-form conclusions — we will call this
f-weakening.

In return for this f-weakening, def-LP has some quite attractive
computational characteristics (as well as being expressively exten-
sible in directions that FOL is not, as discussed earlier). For the
propositional case of def-LP, exhaustive inferencing is O(n) where
n = |RP|— i.e., worst-case linear time [8]. For the general case
with logical variables, the entire conclusion set of a def-LPRP can
be computed in time O(nv+1), when there is a constant bound v on
the number of logical variables per rule (this restriction, which we
will call VB, is typically met in practice). Inferencing in def-LP is
thus tractable (worst-case polynomial time) given VB. In contrast,
DLs are generally not tractable (typically ExpTime or even NExp-
Time complexity for key inference problems), and full FOL is not
decidable.

4. MAPPING DL TO def-Horn
In this section we will discuss how DL languages (e.g.,

DAML+OIL) can be mapped to def-Horn, and vice versa.

4.1 Expressive Restrictions

rules themselves) among predicates/atoms. The well-founded se-
mantics is the most conceptually popular LP semantics in the ba-
sic research community, is increasingly prevalent in both academic
and commercial implementation, and has the virtue of preserving
computational tractability. For definite LP, the stable semantics is
equivalent to the well-founded semantics.

5

We will first discuss the expressive restrictions of DL and def-
Horn as these will constrain the subset of DL and def-Horn for
which a complete mapping can be defined.

DLs are decidable subsets of FOL where the decidability is due
in large part to their having (a form of) the tree model property
[22].15 This property says that a DL class C has a model (an in-
terpretation I in which CI in non-empty) iff C has a tree-shaped
model, i.e., one in which the interpretation of properties defines a
tree shaped directed graph.

This requirement severely restricts the way variables and quan-
tifiers can be used. In particular, quantifiers must be relativized via
atomic formulae (as in the guarded fragment of FOL [11]), i.e., the
quantified variable must occur in a property predicate along with
the free variable (recall that DL classes correspond to formulae with
one free variable). For example, the DL class ∃P.C corresponds to
the FOL formula ∃y.(P (x, y) ∧ C(y)), where the property predi-
cate P acts as a guard. One obvious consequence of this restriction
is that it is impossible to describe classes whose instances are re-
lated to another anonymous individual via different property paths.
For example, it is impossible to assert that individuals who live and
work at the same location are “HomeWorkers”. This is easy with a
Horn rule, e.g.:

HomeWorker(x) ← work(x, y) ∧ live(x, z) ∧ loc(y,w) ∧ loc(z, w)

Another restriction in DLs is that only unary and binary predi-
cates can usually be captured.16 This is a less onerous restriction,
however, as techniques for reifying higher arity predicates are well
known [16].

Definite Horn FOL requires that all variables are universally
quantified (at the outer level of the rule), and restricts logical con-
nectives in certain ways. One obvious consequence of the restric-
tion on quantifiers is that it is impossible to assert the existence
of individuals whose identity might not be known. For example,
it is impossible to assert that all persons have a father (known or
unknown). This is easy with a DL axiom, e.g.:

Person � ∃father.�.

No negation may appear within the body of a rule, nor within the
head. No existentials may appear within the head. Thus it is impos-
sible to assert, e.g., that all persons are either men or women (but
not both). This would also be easy using DL axioms, e.g.:

Person � Man �Woman
Man � ¬Woman.

The Datalog restriction of def-Horn is not an issue for mapping
DL into it, since DL also has the Datalog restriction. Finally, the
equality-free restriction of def-Horn is a significant restriction in
that it prevents representing (partial-)functionality of a property
and also prevents representing maximum cardinality. The prohibi-
tion against existentials in the head prevents representing minimum
cardinality.

4.2 Mapping Statements
In this section, we show how (some of) the statements (axioms)

of DL and DL based languages (such as DAML+OIL and OWL)
correspond to def-Horn statements (rules).

15Expressive features such as transitive properties and the oneOf
constructor compromise the tree model property to some extent,
e.g., transitive properties can cause “short-cuts” down branches of
the tree.

16This is not an inherent restriction, and n-ary DLs are known, e.g.,
DLR [5].

4.2.1 RDFS Statements
RDFS provides a subset of the DL statements described in Sec-

tion 3.1: subclass, subproperty, range, and domain statements
(which in a DL setting are often called Tbox axioms); and asserted
class-instance (type) and instance-property-instance relationships
(which in a DL setting are often called Abox axioms).

As we saw in Section 3.1, a DL inclusion axiom corresponds to
an FOL implication. This leads to a straightforward mapping from
class and property inclusion axioms to def-Horn rules as follows:

C�D, i.e., class C is subclass of class D, maps to:
D(x) ← C(x)

Q�P , i.e., Q is a subproperty of P , maps to:
P (x, y) ← Q(x, y)

As shown in Figure 3, RDFS range and domain statements cor-
respond to DL axioms of the form � � ∀P.C (range of P is C)
and � � ∀P−.C (domain of P is C). From Figure 5, we can
see that these are equivalent to the FOL sentences ∀x. true →
(∀y. P (x, y) → C(y)) and ∀x. true → (∀y. P (y, x) →
C(y)), which can be simplified to ∀x, y. P (x, y) → C(y) and
∀x, y. P (y, x)→ C(y) respectively. These FOL sentences are al-
ready in def-Horn form, which gives us the following mappings for
range and domain:

� � ∀P.C, i.e., the range of property P is class C, maps to:
C(y) ← P (x, y)

� � ∀P−.C, i.e., the domain of property P is class C, maps
to:

C(y) ← P (y, x)

Finally, asserted class-instance (type) and instance-property-
instance relationships, which correspond to DL axioms of the form
a : C and 〈a, b〉 : P respectively (Abox axioms), are equivalent
to FOL sentences of the form C(a) and P (a, b), where a and b
are constants. These are already in def-Horn form: they are simply
rules with empty bodies (which are normally omitted):

a : C, i.e., the individual a is an instance of the class C,
maps to:

C(a)

〈a, b〉 : P , i.e., the individual a is related to the individual b
via the property P , maps to:

P (a, b)

Note that in these rules a and b are ground (constants).

4.2.2 DAML+OIL statements
DAML+OIL extends RDF with additional statements about

classes and properties (Tbox axioms). In particular, it adds ex-
plicit statements about class, property and individual equality and
inequality, as well as statements asserting property inverses, transi-
tivity, functionality (unique) and inverse functionality (unambigu-
ous).

As discussed in Section 3.1, class and property equivalence ax-
ioms can be replaced with a symmetrical pair of inclusion axioms,
so they can be mapped to a symmetrical pair of def-Horn rules as
follows:

C ≡ D, i.e., the class C is equivalent to (has the same ex-
tension as) the class D, maps to:

D(x) ← C(x)
C(x) ← D(x)

P ≡ Q, i.e., the property P is equivalent to (has the same
extension as) the property Q, maps to:

Q(x, y) ← P (x, y)
P (x, y) ← Q(x, y)

6

As we saw in Section 3.1, the semantics of inverse axioms of
the form P ≡ Q− are captured by FOL sentences of the form
∀x, y.P (x, y) ⇐⇒ Q(x, y), and the semantics of transitivity
axioms of the form P+ � P are captured by FOL sentences of the
form ∀x, y, z.P (x, y)∧ P (y, z)→ P (x, z). This leads to a direct
mapping into def-Horn as follows:

P ≡ Q−, i.e., the property Q is the inverse of the property
P , maps to:

Q(y, x) ← P (x, y)
P (x, y) ← Q(y, x)

P+ � P , i.e., the property P is transitive, maps to:
P (x, z) ← P (x, y) ∧ P (y, z)

As we saw in Section 3.1, DL axioms asserting the functionality
of properties correspond to FOL sentences with equality. E.g., a
DL axiom � � � 1 P (P is a functional property) corresponds to
the FOL sentence ∀x, y, z.P (x, y) ∧ P (x, z) → y = z.17 This
kind of axiom cannot be dealt with in our current framework (see
Section 4.1) as it would require def-Horn rules with equality in the
head, i.e., rules of the form (x = y) ← P (x, y) ∧ P (x, z).

4.3 Mapping Constructors
In the previous section we showed how DL axioms correspond

with def-Horn rules, and how these can be used to make statements
about classes and properties. In DLs, the classes appearing in such
axioms need not be atomic, but can be complex compound expres-
sions built up from atomic classes and properties using a variety of
constructors. A great deal of the power of DLs derives from this
feature, and in particular from the set of constructors provided.18

In the following section we will show how these DL expressions
correspond to expressions in the body of def-Horn rules.

In the following we will, as usual, use C, D to denote classes,
P, Q to denote properties and n to denote an integer.

Conjunction (DL �)
A DL class can be formed by conjoining existing classes, e.g.,
C � D. From Figure 5 it can be seen that this corresponds to a
conjunction of unary predicates. Conjunction can be directly ex-
pressed in the body of a def-Horn rule. E.g., when a conjunction
occurs on the l.h.s. of a subclass axiom, it simply becomes conjunc-
tion in the body of the corresponding rule

C1 � C2 � D ≡ D(x) ← C1(x) ∧ C2(x)

Similarly, when a conjunction occurs on the r.h.s. of a subclass
axiom, it becomes conjunction in the head of the corresponding
rule:

C � D1 �D2 ≡ D1(x) ∧D2(x) ← C(x),

This is then easily transformed (via the Lloyd-Topor transforma-
tions [18]) into a pair of def-Horn rules:

D1(x) ← C(x)
D2(x) ← C(x)

Disjunction (DL �)
A DL class can be formed from a disjunction of existing classes,
e.g., C �D. From Figure 5 it can be seen that this corresponds to a
disjunction of unary predicates. When a disjunction occurs on the

17Note that, technically, this is partial-functionality as for any given
x there is no requirement that there exist a y such that P (x, y).

18Note that this feature is not supported in the RDFS subset of DLs.

l.h.s. of a subclass axiom it simply becomes disjunction in the body
of the corresponding rule:

C1 � C2 � D ≡ D(x) ← C1(x) ∨ C2(x)

This is easily transformed (again by Lloyd-Topor) into a pair of
def-Horn rules:

D(x) ← C1(x)
D(x) ← C2(x)

When a disjunction occurs on the r.h.s. of a subclass axiom it
becomes a disjunction in the head of the corresponding rule, and
this cannot be handled within the def-Horn framework.

Universal Restriction (DL ∀)
In a DL the universal quantifier can only be used in restrictions—
expressions of the form ∀P.C (see Section 4.1). This is equivalent
to an FOL clause of the form ∀y.P (x, y) → C(y) (see Figure 5).
P must be a single primitive property, but C may be a compound
expression. Therefore, when a universal restriction occurs on the
r.h.s. of a subclass axiom it becomes an implication in the head of
the corresponding rule:

C � ∀P.D ≡ (D(y) ← P (x, y)) ← C(x),

which is easily transformed into the standard def-Horn rule:

D(y) ← C(x) ∧ P (x, y).

When a universal restriction occurs on the l.h.s. of a subclass
axiom it becomes an implication in the body of the corresponding
rule. This cannot, in general, be mapped into def-Horn as it would
require negation in a rule body.

Existential Restriction (DL ∃)
In a DL, the existential quantifier (like the universal quantifier) can
only be used in restrictions of the form ∃P.C. This is equivalent
to an FOL clause of the form ∃y.P (x, y) ∧ C(y) (see Figure 5).
P must be a single primitive property, but C may be a compound
expression.

When an existential restriction occurs on the l.h.s. of a subclass
axiom, it becomes a conjunction in the body of a standard def-Horn
rule:

∃P.C � D ≡ D(x) ← P (x, y) ∧ C(y).

When an existential restriction occurs on the r.h.s. of a subclass
axiom, it becomes a conjunction in the head of the corresponding
rule, with a variable that is existentially quantified. This cannot be
handled within the def-Horn framework.

Negation and Cardinality Restrictions (DL ¬, � and �)
These constructors cannot, in general, be mapped into def-Horn.
The case of negation is obvious as negation is not allowed in either
the head or body of a def-Horn rule. As can be seen in Figure 5,
cardinality restrictions correspond to assertions of variable equality
and inequality in FOL, and this is again outside of the def-Horn
framework.

In some cases, however, it would be possible to simplify the DL
expression using the usual rewriting tautologies of FOL in order
to eliminate the offending operator(s). For example, negation can
always be pushed inwards by using a combination of De Morgan’s
laws and equivalences such as ¬∃P.C ≡ ∀P.¬C and ¬� n P ≡
� (n − 1) P [1]. Further simplifications are also possible, e.g.,
using the equivalences C �¬C ≡ �, and ∀P.� ≡ �. For the sake
of simplicity, however, we will assume that DL expressions are in a
canonical form where all relevant simplifications have been carried
out.

7

4.4 Defining DHL via a Recursive Mapping
from DL to def-Horn

As we saw in Section 4.3, some DL constructors (conjunction
and universal restriction) can be mapped to the heads of rules when-
ever they occur on the r.h.s. of an inclusion axiom, while some
DL constructors (conjunction, disjunction and existential restric-
tion) can be mapped to the bodies of rules whenever they occur on
the l.h.s. of an inclusion axiom. This naturally leads to the defini-
tion of two DL languages, classes from which can be mapped into
the head or body of LP rules; we will refer to these two languages
as Lh and Lb respectively.

The syntax of the two languages is defined as follows. In both
languages an atomic name A is a class, and if C and D are classes,
then C�D is also a class. In Lh, if C is a class and R is a property,
then ∀R.C is also a class, while in Lb, if D, C are classes and R is
a property, then C �D and ∃R.C are also classes.

Using the mappings from Section 4.3, we can now define a re-
cursive mapping function T which takes a DL axiom of the form
C � D, where C is an Lb-class and D is an Lh-class, and maps it
into an LP rule of the form A ← B. The mapping is defined as
follows:

T (C � D) −→ Th(D, y) ← Tb(C, y)
Th(A, x) −→ A(x)
Th((C �D), x) −→ Th(C, x) ∧ Th(D, x)
Th((∀R.C), x) −→ Th(C, y) ← R(x, y)
Tb(A, x) −→ A(x)
Tb((C �D), x) −→ Tb(C, x) ∧ Tb(D, x)
Tb((C �D), x) −→ Tb(C, x) ∨ Tb(D, x)
Tb((∃R.C), x) −→ R(x, y) ∧ Tb(C, y)

where A is an atomic class name, C and D are classes, R is a
property and x, y are variables, with y being a “fresh” variable,
i.e., one that has not previously been used.

As we saw in Section 4.3, rules of the form (H ∧ H′) ← B
are rewritten as two rules H ← B and H′ ← B; rules of the
form (H ← H ′) ← B are rewritten as H ← (B ∧ H ′);
and rules of the form H ← (B ∨ B′) are rewritten as two rules
H ← B and H ← B′.

For example, T would map the DL axiom

A � ∃R.C � B � ∀P.D

into the LP rule

B(x) ∧ (D(z)←P (x, z)) ← A(x) ∧ R(x, y) ∧ C(x)

which is rewritten as the pair of rules

B(x) ← A(x) ∧ R(x, y) ∧ C(x)
D(z) ← A(x) ∧ R(x, y) ∧ C(x) ∧ P (x, z).

We call L the intersection of Lh and Lb, i.e., the language where
an atomic name A is a class, and if C and D are classes, then C�D
is also a class. We then extend T to deal with axioms of the form
C ≡ D, where C and D are both L-classes:

T (C ≡ D) −→
{
T (C � D)
T (D � C)

As we saw in Section 4.2.1, range and domain axioms � �
∀P.D and � � ∀P−.D are mapped into def-Horn rules of the
form D(y) ← P (x, y) and D(x) ← P (x, y) respectively.
Moreover, class-instance and instance-property-instance axioms
a : D and 〈a, b〉 : P are mapped into def-Horn facts (i.e., rules
with empty bodies) of the form D(a) and P (a, b) respectively. We
therefore extend T to deal with these axioms in the case that D is

an Lh-class:

T (� � ∀P.D) −→ Th(D, y) ← P (x, y)
T (� � ∀P−.D) −→ Th(D, x) ← P (x, y)
T (a : D) −→ Th(D, a)
T (〈a, b〉 : P) −→ P (a, b)

where x, y are variables and a, b are constants.
Finally, we extend T to deal with the property axioms discussed

in Section 4.2:

T (P � Q) −→ Q(x, y) ← P (x, y)

T (P ≡ Q) −→
{

Q(x, y) ← P (x, y)
P (x, y) ← Q(x, y)

T (P ≡ Q−) −→
{

Q(x, y) ← P (y, x)
P (y, x) ← Q(x, y)

T (P+ � P) −→ P (x, z) ← P (x, y) ∧ P (y, z)

Definition 1 (Description Horn Logic) A Description Horn
Logic (DHL) ontology is a set of DHL axioms of the form C � D,
A ≡ B, � � ∀P.D, � � ∀P−.D, P � Q, P ≡ Q, P ≡ Q−,
P+ � P , a : D and 〈a, b〉 : P , where C is an Lb-class, D is an
Lh-class, A, B are L-classes, P, Q are properties and a, b are
individuals.

Using the relationships of (full) DL to FOL discussed in Sec-
tion 3.1, especially Figure 5, it is straightforward to show the fol-
lowing.

Theorem 1 (Translation Semantics) The mapping T preserves
semantic equivalence. Let K be a DHL ontology and H be the
def-Horn ruleset that results from applying the mapping T to all
the axioms in K. Then H is logically equivalent to K w.r.t. the
semantics of FOL — H has the same set of models and entailed
conclusions as K.

DHL can, therefore, be viewed alternatively and precisely as an
expressive fragment of def-Horn— i.e., as the range of T (DHL).

4.5 Expressive Power of DHL
Although the asymmetry of DHL (w.r.t. classes on different sides

of axioms) makes it rather unusual by DL standards, it is easy to see
that it includes (the DAML+OIL subset of) RDFS, as well as that
part of DAML+OIL which corresponds to a simple frame language.

As far as RDFS is concerned, we saw in Section 4.2.1 that
RDFS statements are equivalent to DL axioms of the form C � D,
� � ∀P.C, � � ∀P−.C, P � Q, a : D and 〈a, b〉 : P ,
where C, D are classes, P, Q are properties and a, b are individ-
uals. Given that all RDFS classes are L-classes (they are atomic
class names), a set of DL axioms corresponding to RDFS state-
ments would clearly satisfy the above definition of a DHL ontol-
ogy.

DHL also includes the subset of DAML+OIL corresponding to
simple frame language axioms, i.e., axioms defining a primitive hi-
erarchy of classes, where each class is defined by a frame. A frame
specifies the set of subsuming classes and a set of slot constraints.
This corresponds very neatly to a set of DL axioms of the form
A � Lh.

Moreover, DHL supports the extension of this language to
include equivalence of conjunctions of atomic classes, and ax-
ioms corresponding to DAML+OIL transitive property, and inverse
property statements.

5. DEFINING DLP
Definition 2 (Description Logic Programs) We say that a def-LP
RP is a Description Logic Program (DLP) when it is the LP-
correspondent of some DHL rulesetRH.

8

A DLP is directly defined as the LP-correspondent of a def-Horn
ruleset that results from applying the mapping T . Semantically, a
DLP is thus the f-weakening of that DHL ruleset (recall subsec-
tion 3.2). The DLP expressive class is thus the expressive f-subset
of DHL. By Theorem 1, DLP can, therefore, be viewed alterna-
tively and precisely as an expressive subset of DL, not just of def-
Horn.

In summary, expressively DLP is contained in DHL which in
turn is contained in the expressive intersection of DL and Horn.

6. MORE ABOUT TRANSLATING
As our discussion of expressive relationships has made clear,

there is a bi-directional semantic equivalence of (1) the DHL frag-
ment of DL and (2) the DHL fragment of def-Horn. Likewise, there
is a bi-directional semantic equivalence of the DLP fragment of
DL and the DLP fragment of def-Horn. So far, however, we have
mostly concentrated on only one direction of syntactic mapping:
from DL syntax to def-Horn syntax (and to the corresponding def-
LP), rather than from def-Horn (or def-LP) to DL. Next, we eluci-
date our reasons for this emphasis.

First, a prime immediate goal for the Semantic Web is to enable
rules (in LP / Horn) on top of ontologies (in DL) — more than
vice versa to enable DL ontologies on top of LP or Horn rules.
Second, it is desirable to exploit the relatively numerous, mature,
efficient, scalable algorithms and implementations (i.e., engines)
already available for LP inferencing so as to perform some frag-
ment of DL inferencing — more than vice versa to perform LP
via the fewer available DL engines, which are designed to handle
more expressive languages (than DLP) and may not be optimized
for DLP ontologies. Third, as compared to def-Horn, DL has a rel-
atively detailed set of quite specific syntactic expressive constructs;
it was easier to go through these one by one to define a translation
mapping than to do so in the reverse direction where one has to
invent more structure/forms.

We do not have space here to give detailed algorithms and com-
putational complexity analyses of the syntactic translations. We
will limit ourselves to some relatively high-level observations;
these are straightforward to show. The T mapping, from DL syn-
tax to def-Horn/def-LP syntax, corresponds immediately to an al-
gorithm whose computational complexity is tractable. This map-
ping is invertible (e.g., in the usual manner of parsers) from def-
Horn/def-LP syntax to DL syntax, again, tractably.

7. INFERENCING
As discussed in the previous section, one of the prime goals of

this work is to enable some fragment of DL inferencing to be per-
formed by LP engines. In this section we will discuss the kinds of
inference typically of interest in DL and LP, and how they can be
represented in each other, i.e., in LP and DL respectively. Although
the emphasis is on performing DL inferencing, via our mapping
translation, using an LP reasoning engine, the reverse mapping can
be used in order to perform LP inferencing using a DL reasoning
engine. In particular, we will show how inferencing in (the DHL
fragment of) DL can be reduced, via our translation, to inferencing
in LP; and how vice versa, inferencing in (the DLP fragment of)
LP can be reduced to inferencing in DL.

In a DL reasoning system, several different kinds of query are
typically supported w.r.t. a knowledge base K. These include
queries about classes:

1. class-instance membership queries: given a class C,

(a) ground: determine whether a given individual a is an
instance of C;

(b) open: determine all the individuals in K that are in-
stances of C;

(c) “all-classes”: given an individual a, determine all the
(named) classes in K that a is an instance of;

2. class subsumption queries: i.e., given classes C and D, de-
termine if C is a subclass of D w.r.t.K;

3. class hierarchy queries: i.e., given a class C return all/most-
specific (named) superclasses of C in K and/or all/most-
general (named) subclasses of C in K;

4. class satisfiability queries, i.e., given a class C, determine if
C is satisfiable (consistent) w.r.t.K.

In addition, there are similar queries about properties: property-
instance membership, property subsumption, property hierarchy,
and property satisfiability. We will call QDL the language defined
by the above kinds of DL queries.

In LP reasoning engines, there is one basic kind of query sup-
ported w.r.t. a rulesetR: atom queries. These include:

1. ground: determine whether a ground atom A is entailed;

2. open (ground is actually a special case of this): determine,
given an atom A (in which variables may appear), all the
tuples of variable bindings (substitutions) for which the atom
is entailed.

We call QLP the language defined by the above kinds of LP
queries.

Next, we discuss how to reduce QDL querying in (the DHL
fragment of) DL to QLP querying in (the DLP fragment of) LP
using the mapping T . We will assume that R is a ruleset derived
from a DL knowledge base K via T , and that all QDL queries are
w.r.t.K.
QLP (ground or open) atom queries can be used to answer
QDL (ground or open) class-instance membership queries when
the class is an Lh-class, i.e., a is an instance of C iff R entails
T (a : C). When C is an atomic class name, the mapping leads
directly to a QLP atom query. When C is a conjunction, the re-
sult is a conjunction of QLP atom queries, i.e., a is an instance
of C � D iff R entails T (a : C) and R entails T (a : D).
When C is a universal restriction, the mapping T (a : ∀P.C) gives
T (C, y) ← P (a, y). This can be transformed into aQLP atom
query using a simple kind of skolemization, i.e., y is replaced with
a constant b, where b is new in R, and we have a is an instance of
∀P.C iffR ∪ {P (a, b)} entails T (b : C).

The case of property-instance membership queries is trivial as
all properties are atomic: 〈a, b〉 is an instance of P iff R entails
P (a, b).

Complete information about class-instance relationships, to an-
swer open or “all-classes” class-instance queries, can then be ob-
tained via class-instance queries about all possible combinations of
individuals and classes in K.19 (Note that the set of named individ-
uals and classes is known, and its size is worst-case linear in the
size of the knowledge/rule base.)

For Lh-classes,QDL class subsumption queries can be reduced
to QLP using a similar technique to class-instance membership
queries, i.e., C is a subclass of D iffR∪{T (a : C)} entails T (a :
D), for a new inR. For QDL property subsumption queries, P is
a subproperty of Q iffR ∪ P (a, b) entails Q(a, b), for a, b new in
R.

19More efficient algorithms would no doubt be used in practice.

9

Complete information about the class hierarchy can be obtained
by computing the partial ordering of classes inK based on the sub-
sumption relationship.

In the DHL (and DLP) fragment, determining class/property sat-
isfiability is a non-issue as, with the expressive power at our dis-
posal in def-Horn, it is impossible to make a class or a property
unsatisfiable.

Now let us consider the reverse direction from QLP to QDL.
In the DLP fragment of LP, every predicate is either unary or bi-
nary. Every atom query can thus be viewed as about either a named
class or a property. Also, generally in LP, any open atom query is
formally reducible to a set of ground atom queries — one for each
of its instantiations. Thus QLP is reducible to class-instance and
property-instance membership queries in DL.

To recap, we have shown the following.

Theorem 2 (Inferencing Inter-operability) For Lh-classes,
QDL querying in (the DHL fragment of) DL is reducible to QLP
querying in (the DLP fragment of) LP, and vice versa.

8. DISCUSSION
In this paper we have shown how to interoperate, semanti-

cally and inferentially, between the leading Semantic Web ap-
proaches to rules (RuleML Logic Programs) and ontologies
(OWL/DAML+OIL Description Logic). We have begun by study-
ing two new KRs, Description Logic Programs (DLP), which is
defined by the expressive intersection of the two approaches, and
the closely related Description Horn Logic (DHL).

We have shown that DLP (or DHL) can capture a significant frag-
ment of DAML+OIL, including the whole of the DAML+OIL sub-
set of RDFS, simple frame axioms and more expressive property
axioms. Many of the ontologies in the DAML ontology library are
inside this fragment of DAML+OIL. An immediate result of this
work is that LP engines could be used for reasoning with these on-
tologies and for reasoning with (possibly very large numbers of)
facts, such as web page annotations, that use vocabulary from these
ontologies.

This work represents only a first step in realising a more com-
plete interoperability between rules and ontologies, and the lay-
ering of rules on top of ontology languages in the Semantic Web
“stack”. We believe, however, that our study of the expressive in-
tersection will provide a firm foundation for future investigations
of more expressive languages up to and including the expressive
union of rules and ontologies.

Acknowledgements
Thanks to Tim Berners-Lee, Harold Boley, Dan Connolly, Michael
Dean, Stefan Decker, Richard Fikes, Patrick Hayes, Jim Hendler,
Deborah McGuinness, Jos De Roo, Peter Patel-Schneider, Raphael
Volz, and other members of the DAML+OIL Joint Committee for
helpful comments and discussions.

9. REFERENCES
[1] F. Baader, D. Calvanese, D. McGuinness, D. Nardi, and

P. Patel-Schneider, editors. The Description Logic
Handbook. Cambridge University Press, 2002.

[2] C. Baral and M. Gelfond. Logic programming and
knowledge representation. Journal of Logic Programming,
19/20:73–148, 1994.

[3] A. Borgida. On the relative expressiveness of description
logics and predicate logics. Artificial Intelligence,
82(1–2):353–367, 1996.

[4] D. Brinkley and R. V. Guha. Resource description
framework (RDF) schema specification 1.0. W3C Candidate
Recommentation, Mar. 2000.
http://www.w3.org/TR/2000/CR-rdf-schema-20000327/.

[5] D. Calvanese, G. De Giacomo, and M. Lenzerini. On the
decidability of query containment under constraints. In Proc.
of PODS’98, pages 149–158, 1998.

[6] M. Dean, D. Connolly, F. van Harmelen, J. Hendler,
I. Horrocks, D. L. McGuinness, P. F. Patel-Schneider, and
L. A. Stein. OWL web ontology language 1.0 reference, July
2002. http://www.w3.org/TR/owl-ref/.

[7] F. M. Donini, M. Lenzerini, D. Nardi, and W. Nutt. The
complexity of concept languages. In Proc. of KR’91, pages
151–162, 1991.

[8] W. Dowling and J. Gallier. Linear time algorithms for testing
the satisfiability of propositional horn formulae. Journal of
Logic Programming, 3:267–284, 1984.

[9] A. Firat, S. Madnick, and B. N. Grosof. Financial
information integration in the presence of equational
ontological conflicts. In Proc. of WITS-2002, 2002.

[10] A. Firat, S. Madnick, and B. N. Grosof. Knowledge
integration to overcome ontological heterogeneity:
Challenges from financial information systems. In Proc. of
ICIS-2002, To appear.

[11] E. Grädel. On the restraining power of guards. J. of Symbolic
Logic, 64:1719–1742, 1999.

[12] B. N. Grosof. Representing e-business rules for the semantic
web: Situated courteous logic programs in ruleml. In Proc.
of WITS ’01, 2001.

[13] B. N. Grosof, Y. Labrou, and H. Y. Chan. A declarative
approach to business rules in contracts: Courteous logic
programs in xml. In Proc. of EC-99, 1999.

[14] B. N. Grosof and T. C. Poon. Representing agent contracts
with exceptions using xml rules, ontologies, and process
descriptions. In Proc. of International Workshop on Rule
Markup Languages for Business Rules on the Semantic Web,
2002.

[15] I. Horrocks and U. Sattler. Ontology reasoning in the
SHOQ(D) description logic. In Proc. of IJCAI 2001, pages
199–204, 2001.

[16] I. Horrocks, U. Sattler, S. Tessaris, and S. Tobies. How to
decide query containment under constraints using a
description logic. In Proc. of LPAR’2000, 2000.

[17] I. Horrocks, U. Sattler, and S. Tobies. Practical reasoning for
expressive description logics. In Proc. of LPAR’99, pages
161–180, 1999.

[18] J. W. Lloyd. Foundations of logic programming (second,
extended edition). Springer series in symbolic computation.
Springer-Verlag, New York, 1987.

[19] D. M. Reeves, M. P. Wellman, and B. N. Grosof. Automated
negotiation from declarative contract descriptions.
Computational Intelligence, 18(4), 2002.

[20] K. Schild. A correspondence theory for terminological
logics: Preliminary report. In Proc. of IJCAI’91, pages
466–471, 1991.

[21] M. Schmidt-Schauß and G. Smolka. Attributive concept
descriptions with complements. Artificial Intelligence,
48(1):1–26, 1991.

[22] M. Y. Vardi. Why is modal logic so robustly decidable? In
N. Immerman and P. Kolaitis, editors, Descriptive
Complexity and Finite Models. American Mathematical
Society, 1997.

10

