
Semantic Web Ontologies
Chris Welty

IBM Research
(also W3C Semantic Web Best Practices WG)

RDF to RDFS

• RDF
– triples as relations

• <Chris Father William>
– Interpreted as a graph
– What do they mean?

• <Person Father Person>

• RDFS
– Data types: class
– Specialization: subclass

Chris William

Father

The groundwork

• RDF + RDFS driven by multiple influences
– Database
– Knowledge Representation
– Un/Semi Structured data
– ERP
– …

• Provides a foundation to expand into these areas

OWL

• Adds entailments to RDFS
– IF Author-of(x,y) AND Author-of(z,y)
THEN Collaborator(x,z)

• Three levels
– Lite: easier to implement Description Logic
– DL: based on latest Description Logic
– Full: First order with reified predicates

Entailment

• A → B (“A implies B”)
– ≤x P(x) → Q(x) ∧ R(x)
– P(A) → Q(A) ∧ R(A)

• A Ñ B (“A entails B”)
– More general than implication
– Implication generally requires unification
– (≤x P(x) ∨ Q(x) → R(x)) Ñ (≤x P(x) → R(x))
– Computationally, a form of “caching”

The Two Semantics

• Language (denotational) semantics
– Lambda calculus, model theory, set theory
– Critical for understanding inference
– What does it mean to say A → B?

• Domain (interpretive) semantics
– What terms refer to
– Constrain “unintended models”
– What does it mean to say “Horse”

A Brief Skewed History of KR

• KR in the 70s
– focused on graphical notations (i.e. semantic nets)
– Much attention paid to taxonomies
– No semantics
– McDermott: “No representation w/o denotation”

• KR in the 80s
– Split into several areas
– Lots of semantics
– Brachman and Levesque: “Tradeoff between expressiveness and

tractability”

The Tradeoff

The tractability of computing the deductive closure of a
knowledge base decreases as the expressiveness of

the language increases

•Computational properties
– Sound

• Everything provable is true
– Complete

• Everything true is provable
– Decidable

• Everything true is provable in finite time

Description Logics Philosophy

• Map the territory around the E/T boundary
• Maintain computational properties

– Sound, complete
– Decidable in Pspace, often NP
– A “decidable fragment” of FOL

• Start in known territory
• Increase expressiveness one operation at a time
• Set and Model Theoretic Semantics
• Focus on subsumption reasoning

Subsumption

• Exploit the power of taxonomies
• For efficiency, compute when one expression entails

another
≤x,y Book(x) ∧ Author-of(x,y) → Person(y)
≤x,y Book(x) ∧ Person(y) ∧ About(x,y) → Biography(x)
≤x,y Book(x) ∧ About(x,y) ∧ Author-of(x,y) → Autobiography(x)

Ñ
≤x Autobiography(x) → Biography(x)

Necessary and Sufficient

• C necessary for P
P(x) → C(x)

• C sufficient for P
C(x) → P(x)

• Description logics “concepts” (classes) include
necessary and sufficient conditions
– This is peculiar in KR

Simple example

• Book::
(all author Person)

• Biography::
(and Book (all about Person))

• Auto-Biography::
(and Book (same-as about author))

Ñ Auto-Biography ` Biography

Early DLs

• KL-ONE, NIKL
• Krypton

– No longer frame based
• Structural DLs

– CLASSIC (AT&T), BACK (Hamburg), Loom(ISI)
– Eventually shown to be incomplete

• Later Propositional DLs
– RACER, DLQ
– FaCT

Simple Structural Language
(FL-)

• Concept Operators: And
– (and person male)

• Relation operators: all, exists
– (all author Person)
– (exists author Person)

• Subsumption decidable in P
• “Compilation” reduces to linear

Experiment

• Add Negation to FL-
• Early result

– semi-decidable in EXPTIME
• Later results

– decidable in P-SPACE
– Compilation yields average linear time complexity
– Expensive cases documented

Simple Propositional Language
(ALC)

• Concept Operators
– AND, OR, NOT

• Relation Operators
– ALL, Exists

• Decidable in P-SPACE
• Usually extremely fast

FaCT

• The most expressive DL to date
• Concept Operators

– AND, OR, NOT
– Concrete domains (integers, strings)

• Relation operators
– AND, OR, NOT, inverse, exists, all, at-least, at-most
– Same-as, one-of
– Qualified number restrictions (at-most n C)
– Transitivity

• Rules

OWL-DL
The good

• A tagged and updated version of FaCT
• Supported by tools

– Prototype Reasoning engine (U Manchester)
– Commercial Reasoning enginer (NI.com)
– Ontology Editor

• Expressed in RDF, RDF-S
• Decidable in P-SPACE
• Average cases extremely fast

OWL-DL
The bad

• No Higher order, Modality
• No N-ary relations
• No Only-sufficient conditions
• No Non-monotonicity
• No general existential quantification

∃x Elephant(x)

OWL-DL
The ugly

<owl:Class rdf:ID="Wine">
<rdfs:subClassOf rdf:resource="&food;PotableLiquid"/>
<rdfs:subClassOf>
<owl:Restriction>
<owl:onProperty rdf:resource="#madeFromGrape"/>
<owl:minCardinality rdf:datatype="&xsd;NonNegativeInteger">

1
</owl:minCardinality>

</owl:Restriction>
</rdfs:subClassOf>
<rdfs:subClassOf>
<owl:Restriction>
<owl:onProperty rdf:resource="#locatedIn"/>
<owl:minCardinality rdf:datatype="&xsd;NonNegativeInteger">

1
</owl:minCardinality>

</owl:Restriction>
</rdfs:subClassOf>

</owl:Class>

What can you say?

• All Presidents are People
<owl:Class rdf:ID=“President">
<rdfs:subClassOf rdf:resource=“Person"/>

</owl:Class>

• George Washington is a President
<President rdf:ID=“George Washington”/>

• A NonFrenchWine is not from France
<owl:Class rdf:ID="NonFrenchWine">
<owl:intersectionOf rdf:parseType="Collection">
<owl:Class rdf:about="#Wine"/>
<owl:complementOf>
<owl:Restriction>
<owl:onProperty rdf:resource="#locatedIn" />
<owl:hasValue rdf:resource="#FrenchRegion" />
</owl:Restriction>
</owl:complementOf>
</owl:Class>
</owl:intersectionOf>
</owl:Class>

r Located-in Francer NOT Located-in France

OWL
Why Three Languages?

• OWL Lite – easier to implement
– Cardinality restricted to 0,1
– All classes must be named
– No One-of or disjoint-with

• OWL DL – decidable, complete
• OWL Full – undecidable, incomplete

– Relations, properties, in UoD
– Full RDF compatibility
– Possible to implement other useful subsets (e.g. LP)

Generally, Lite _ DL _ Full

OWL is not just OWL-DL!!!

OWL Walkthrough

OWL Ontology Elements

• Classes
<owl:Class rdf:ID=“Winery” />

• Individuals
<Winery rdf:ID=“WeltyVinyards” />

• Properties
<owl:ObjectProperty rdf:ID=“hasColor” />

OWL Individuals

• Populate the universe of discourse
– Aka “instances”, “objects”

• Have structure
– Relations to other individuals
– Attributes with values

• Have class membership
– Explicit and implicit

• Can be equated, differentiated

<Wine rdf:ID="ChateauChevalBlancStEmilion">
<hasMaker rdf:resource="#ChateauChevalBlanc" />
</Wine>

Could entail c FrenchWine

OWL Properties

• Relate individuals to other individuals
– ObjectProperty
– Aka relation

• Relate individuals to primitive values
– DataTypeProperty
– Aka attribute

• Can have global domain/range restrictions
• Can be related by special relations

– SubProperty, Inverse, equivalence
• Special classes of properties

– Transitive, symmetric, functional, inverseFunctional

OWL Full: properties and classes can be
individuals

OWL Classes

• Describe sets of individuals
– Constraints on membership, and on properties of members

• Can be related by special relations
– Subclass, equivalence, union, intersection, complement,

disjointness
• Can enumerate members
• Two special classes

– OWL:Thing (subsumes all classes)
– OWL:Nothing (subsumed by all classes)

OWL Full: classes can be individuals, and can
have properties of their own

Local Property Restrictions

• Constrain the properties of class members
– Cardinality, default value, range (universal, existential, qualified)

• Specified as part of a class

<owl:Class rdf:ID="Vintage">
<rdfs:subClassOf>
<owl:Restriction>
<owl:onProperty rdf:resource="#hasVintageYear"/>
<owl:cardinality rdf:datatype="&xsd;nonNegativeInteger">

1
</owl:cardinality>

</owl:Restriction>
</rdfs:subClassOf>
</owl:Class>

All vintages must have 1 vintage year

Local vs. Global restrictions

<owl:ObjectProperty rdf:ID="madeFrom">
<rdfs:domain rdf:resource="#ManufacturedThing" />
<rdfs:range rdf:resource="#NaturalThing" />

</owl:ObjectProperty>

<owl:Class rdf:ID=“Wine">
<rdfs:subClassOf>
<owl:Restriction>
<owl:onProperty rdf:resource="#madeFrom"/>
<owl:allValuesFrom rdf:resource=“#Grape“ />
</owl:Restriction>

</rdfs:subClassOf>
</owl:Class>

The madeFrom relation holds between
instances of ManufacturedThing and
NaturalThing (sufficient)

When the domain of a madeFrom relation is
an instance of Wine, the range is an instance
of Grape (sufficient)

<owl:Thing rdf:ID=“fruit1” />
<owl:Thing rdf:ID=“drink1“>

<madeFrom rdf:resource= =“Fruit1”>
</owl:Thing>

Ñ
<ManufacturedThing rdf:resource=“drink1” />
<NaturalThing rdf:resource=“fruit1” />

Global Implications

drink1 madeFrom fruit1

drink1 type ManufacturedThing
fruit1 type NaturalThing

<owl:ObjectProperty rdf:ID="madeFrom">
<rdfs:domain rdf:resource="#ManufacturedThing" />
<rdfs:range rdf:resource="#NaturalThing" />

</owl:ObjectProperty>

<owl:Thing rdf:ID=“fruit1” />
<Wine rdf:ID=“drink1“>

<madeFrom rdf:resource=“fruit1”>
</owl:Thing>

Ñ
<Grape rdf:resource=“fruit1” />

Local Implications

drink1 type Wine
drink1 madeFrom fruit1

fruit1 type Grape

<owl:Class rdf:ID=“Wine"> <rdfs:subClassOf> <owl:Restriction>
<owl:onProperty rdf:resource="#madeFrom"/>
<owl:allValuesFrom rdf:resource=“#Grape“ />

</owl:Restriction> </rdfs:subClassOf> </owl:Class>

Sub-Properties

<owl:ObjectProperty rdf:ID=“containedIn">
<rdfs:domain rdf:resource="#spatialThing" />
<rdfs:range rdf:resource="#spatialThing" />

</owl:ObjectProperty>

<owl:ObjectProperty rdf:ID=“locatedIn">
<rdfs:subPropertyOf rdf:resource="#containedIn" />

</owl:ObjectProperty>

If x is locatedIn y then x is containedIn y

Transitive and Inverse Properties

<owl:ObjectProperty rdf:ID=“containedIn">
<rdfs:type rdf:resource=“&owl;transitiveProperty” />

</owl:ObjectProperty>

<owl:ObjectProperty rdf:ID=“contains">
<owl:inverseOf rdf:resource="#containedIn" />

</owl:ObjectProperty>

If x is containedIn y and y is containedIn z
then x is containedIn z

If x is containedIn y then y contains x

Implications

<place1 locatedIn place2>
<place2 locatedIn place3>

Ñ
<place1 type SpatialThing>
<place2 type SpatialThing>
<place3 type SpatialThing>
<place1 containedIn place2>
<place2 containedIn place3>
<place1 containedIn place3>
<place3 contains place2>
<place3 contains place1>
<place2 contains place1>

<owl:Thing rdf:ID=“place2” >
<locatedIn rdf:resource=“place1” />

</owl:Thing>
<owl:Thing rdf:ID=“place1” >
<SpatialThing rdf:resource=“place1” />

locatedIn subPropertyOf containedIn

containedIn is transitive
contains is the inverse of containedIn

Importance of Disjointness

• Many OWL constructs (e.g. range and domain) are
necessary and sufficient
– Many frame and OO systems use only necessary

• Result is that types are inferred
• To generate “type mismatch” errors requires an

inconsistency

<owl:Class rdf:ID=“Wine">
<rdfs:subClassOf>
<owl:Restriction>
<owl:onProperty rdf:resource="#madeFrom"/>
<owl:allValuesFrom rdf:resource=“#Grape“ />

</owl:Restriction>
</rdfs:subClassOf>

</owl:Class>
<owl:Class rdf:ID=“Grape” />
<owl:Class rdf:ID=“Color”>
<rdfs:subClassOf rdf:resource="#WineDescriptor"/>
<owl:oneOf rdf:parseType="Collection">
<owl:Thing rdf:about="#White"/>
<owl:Thing rdf:about="#Rose"/>
<owl:Thing rdf:about="#Red"/>

</owl:oneOf>
</owl:class>

<wine1 type Wine>
<wine1 madeFrom White>

<owl:Class rdf:resource=“#Color">
<owl:disjointWith rdf:resource="#Grape"/>

</owl:Class>

OK!! Ñ <White type Grape>

Leads to inconsistency

General Lessons

• Don’t argue about what an ontology is
• Building ontologies is engineering
• Knowledge-based systems rely on knowledge
• Using reasoning vs. specifying semantics
• Neither semantics nor web are new
• Difference between semantic web and RDF, OWL
• Difference between “Abox” and “Tbox”

For more information

• SW Best Practices WG:
http://www.w3.org/2001/sw/BestPractices/

• Webont WG:
http://www.w3.org/2001/sw/WebOnt/

• OWL Guide:
http://www.w3.org/TR/owl-guide/

• OWL Overview:
http://www.w3.org/TR/owl-guide/

http://www.w3.org/TR/owl-guide/

This slide intentionally left blank.

Example

• <owl:Class rdf:ID="Wine">
• <rdfs:subClassOf rdf:resource="#PotableLiquid" />
• <rdfs:subClassOf>
• <owl:Restriction>
• <owl:onProperty rdf:resource="#hasMaker" />
• <owl:cardinality

rdf:datatype="http://www.w3.org/2001/XMLSchema#nonNegativeInteger">1</owl:c
ardinality>

• </owl:Restriction>
• </rdfs:subClassOf>
• - <rdfs:subClassOf>
• - <owl:Restriction>
• <owl:onProperty rdf:resource="#hasMaker" />
• <owl:allValuesFrom rdf:resource="#Winery" />
• </owl:Restriction>
• </rdfs:subClassOf>
• - <rdfs:subClassOf>
• - <owl:Restriction>
• <owl:onProperty rdf:resource="#madeFromGrape" />
• <owl:minCardinality

rdf:datatype="http://www.w3.org/2001/XMLSchema#nonNegativeInteger">1</owl:m
inCardinality>

• </owl:Restriction>
• </rdfs:subClassOf>
• - <rdfs:subClassOf>
• - <owl:Restriction>

< l P t df "#h S " />

Finite Universes

• OWL Full includes the language elements in the Universe
of Discourse, OWL DL does not

• OWL:THING in OWL-DL is an OWL:CLASS
• Thus it is legal to say:

– OWL:THING one-of (A)
– In OWL-Full, this entails all language elements are the same
– In OWL-DL, it does not

	Semantic Web Ontologies
	RDF to RDFS
	The groundwork
	OWL
	Entailment
	The Two Semantics
	A Brief Skewed History of KR
	The Tradeoff
	Description Logics Philosophy
	Subsumption
	Necessary and Sufficient
	Simple example
	Early DLs
	Simple Structural Language (FL-)
	Experiment
	Simple Propositional Language(ALC)
	FaCT
	OWL-DLThe good
	OWL-DLThe bad
	OWL-DLThe ugly
	What can you say?
	OWLWhy Three Languages?
	OWL Walkthrough
	OWL Ontology Elements
	OWL Individuals
	OWL Properties
	OWL Classes
	Local Property Restrictions
	Local vs. Global restrictions
	Global Implications
	Local Implications
	Sub-Properties
	Transitive and Inverse Properties
	Implications
	Importance of Disjointness
	General Lessons
	For more information
	
	Example
	Finite Universes

