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RDF to RDFS

• RDF
– triples as relations

• <Chris Father William>
– Interpreted as a graph
– What do they mean?

• <Person Father Person>

• RDFS
– Data types: class
– Specialization: subclass

Chris William

Father



The groundwork

• RDF + RDFS driven by multiple influences
– Database
– Knowledge Representation
– Un/Semi Structured data
– ERP
– …

• Provides a foundation to expand into these areas



OWL

• Adds entailments to RDFS
– IF Author-of(x,y) AND Author-of(z,y)
THEN Collaborator(x,z)

• Three levels
– Lite: easier to implement Description Logic
– DL: based on latest Description Logic
– Full: First order with reified predicates



Entailment

• A → B (“A implies B”)
– ≤x P(x) → Q(x) ∧ R(x)
– P(A) → Q(A) ∧ R(A)

• A Ñ B (“A entails B”)
– More general than implication
– Implication generally requires unification
– (≤x P(x) ∨ Q(x) → R(x)) Ñ (≤x P(x) → R(x))
– Computationally, a form of “caching”



The Two Semantics

• Language (denotational) semantics
– Lambda calculus, model theory, set theory
– Critical for understanding inference
– What does it mean to say A → B?

• Domain (interpretive) semantics
– What terms refer to
– Constrain “unintended models”
– What does it mean to say “Horse”



A Brief Skewed History of KR

• KR in the 70s
– focused on graphical notations (i.e. semantic nets)
– Much attention paid to taxonomies
– No semantics
– McDermott: “No representation w/o denotation”

• KR in the 80s
– Split into several areas
– Lots of semantics
– Brachman and Levesque: “Tradeoff between expressiveness and 

tractability”



The Tradeoff

The tractability of computing the deductive closure of a 
knowledge base decreases as the expressiveness of 

the language increases

•Computational properties
– Sound

• Everything provable is true
– Complete

• Everything true is provable
– Decidable

• Everything true is provable in finite time



Description Logics Philosophy

• Map the territory around the E/T boundary
• Maintain computational properties

– Sound, complete
– Decidable in Pspace, often NP
– A “decidable fragment” of FOL

• Start in known territory
• Increase expressiveness one operation at a time
• Set and Model Theoretic Semantics
• Focus on subsumption reasoning



Subsumption

• Exploit the power of taxonomies
• For efficiency, compute when one expression entails 

another
≤x,y Book(x) ∧ Author-of(x,y) → Person(y)
≤x,y Book(x) ∧ Person(y) ∧ About(x,y) → Biography(x)
≤x,y Book(x) ∧ About(x,y) ∧ Author-of(x,y) → Autobiography(x)

Ñ
≤x Autobiography(x) → Biography(x)



Necessary and Sufficient

• C necessary for P
P(x) → C(x)

• C sufficient for P
C(x) → P(x)

• Description logics “concepts” (classes) include 
necessary and sufficient conditions
– This is peculiar in KR



Simple example

• Book::
(all author Person)

• Biography::
(and Book (all about Person))

• Auto-Biography::
(and Book (same-as about author))

Ñ Auto-Biography ` Biography



Early DLs

• KL-ONE, NIKL
• Krypton

– No longer frame based
• Structural DLs

– CLASSIC (AT&T), BACK (Hamburg), Loom(ISI)
– Eventually shown to be incomplete

• Later Propositional DLs
– RACER, DLQ
– FaCT



Simple Structural Language 
(FL-)

• Concept Operators: And 
– (and person male)

• Relation operators: all, exists
– (all author Person)
– (exists author Person)

• Subsumption decidable in P
• “Compilation” reduces to linear



Experiment

• Add Negation to FL-
• Early result

– semi-decidable in EXPTIME
• Later results

– decidable in P-SPACE
– Compilation yields average linear time complexity
– Expensive cases documented



Simple Propositional Language
(ALC)

• Concept Operators
– AND, OR, NOT

• Relation Operators
– ALL, Exists

• Decidable in P-SPACE
• Usually extremely fast



FaCT

• The most expressive DL to date
• Concept Operators

– AND, OR, NOT
– Concrete domains (integers, strings)

• Relation operators
– AND, OR, NOT, inverse, exists, all, at-least, at-most
– Same-as, one-of
– Qualified number restrictions (at-most n C)
– Transitivity

• Rules



OWL-DL
The good

• A tagged and updated version of FaCT
• Supported by tools

– Prototype Reasoning engine (U Manchester)
– Commercial Reasoning enginer (NI.com)
– Ontology Editor

• Expressed in RDF, RDF-S
• Decidable in P-SPACE
• Average cases extremely fast



OWL-DL
The bad

• No Higher order, Modality
• No N-ary relations
• No Only-sufficient conditions
• No Non-monotonicity
• No general existential quantification 

∃x Elephant(x)



OWL-DL
The ugly

<owl:Class rdf:ID="Wine"> 
<rdfs:subClassOf rdf:resource="&food;PotableLiquid"/>
<rdfs:subClassOf> 
<owl:Restriction> 
<owl:onProperty rdf:resource="#madeFromGrape"/>
<owl:minCardinality rdf:datatype="&xsd;NonNegativeInteger">

1
</owl:minCardinality> 

</owl:Restriction>
</rdfs:subClassOf>
<rdfs:subClassOf>
<owl:Restriction>
<owl:onProperty rdf:resource="#locatedIn"/>
<owl:minCardinality rdf:datatype="&xsd;NonNegativeInteger">

1
</owl:minCardinality>

</owl:Restriction>
</rdfs:subClassOf>

</owl:Class> 



What can you say?

• All Presidents are People
<owl:Class rdf:ID=“President"> 
<rdfs:subClassOf rdf:resource=“Person"/>

</owl:Class>

• George Washington is a President
<President rdf:ID=“George Washington”/>

• A NonFrenchWine is not from France
<owl:Class rdf:ID="NonFrenchWine"> 
<owl:intersectionOf rdf:parseType="Collection">
<owl:Class rdf:about="#Wine"/>
<owl:complementOf>
<owl:Restriction>
<owl:onProperty rdf:resource="#locatedIn" />
<owl:hasValue rdf:resource="#FrenchRegion" />
</owl:Restriction>
</owl:complementOf>
</owl:Class>
</owl:intersectionOf>
</owl:Class> 

r Located-in Francer NOT Located-in France



OWL
Why Three Languages?

• OWL Lite – easier to implement
– Cardinality restricted to 0,1
– All classes must be named
– No One-of or disjoint-with

• OWL DL – decidable, complete
• OWL Full – undecidable, incomplete

– Relations, properties, in UoD
– Full RDF compatibility
– Possible to implement other useful subsets (e.g. LP)

Generally, Lite _ DL _ Full

OWL is not just OWL-DL!!!



OWL Walkthrough



OWL Ontology Elements

• Classes
<owl:Class rdf:ID=“Winery” />

• Individuals
<Winery rdf:ID=“WeltyVinyards” />

• Properties
<owl:ObjectProperty rdf:ID=“hasColor” />



OWL Individuals

• Populate the universe of discourse
– Aka “instances”, “objects”

• Have structure
– Relations to other individuals
– Attributes with values

• Have class membership
– Explicit and implicit

• Can be equated, differentiated

<Wine rdf:ID="ChateauChevalBlancStEmilion">
<hasMaker rdf:resource="#ChateauChevalBlanc" /> 
</Wine>

Could entail c FrenchWine



OWL Properties

• Relate individuals to other individuals
– ObjectProperty
– Aka relation

• Relate individuals to primitive values
– DataTypeProperty
– Aka attribute

• Can have global domain/range restrictions
• Can be related by special relations

– SubProperty, Inverse, equivalence
• Special classes of properties

– Transitive, symmetric, functional, inverseFunctional

OWL Full: properties and classes can be 
individuals



OWL Classes

• Describe sets of individuals
– Constraints on membership, and on properties of members

• Can be related by special relations
– Subclass, equivalence, union, intersection, complement, 

disjointness
• Can enumerate members
• Two special classes

– OWL:Thing (subsumes all classes)
– OWL:Nothing (subsumed by all classes)

OWL Full: classes can be individuals, and can 
have properties of their own



Local Property Restrictions

• Constrain the properties of class members
– Cardinality, default value, range (universal, existential, qualified)

• Specified as part of a class

<owl:Class rdf:ID="Vintage">
<rdfs:subClassOf>
<owl:Restriction>
<owl:onProperty rdf:resource="#hasVintageYear"/>
<owl:cardinality rdf:datatype="&xsd;nonNegativeInteger">

1
</owl:cardinality>

</owl:Restriction>
</rdfs:subClassOf>
</owl:Class>

All vintages must have 1 vintage year



Local vs. Global restrictions

<owl:ObjectProperty rdf:ID="madeFrom">
<rdfs:domain rdf:resource="#ManufacturedThing" />
<rdfs:range rdf:resource="#NaturalThing" />

</owl:ObjectProperty>

<owl:Class rdf:ID=“Wine">
<rdfs:subClassOf>
<owl:Restriction>
<owl:onProperty rdf:resource="#madeFrom"/>
<owl:allValuesFrom rdf:resource=“#Grape“ />
</owl:Restriction>

</rdfs:subClassOf>
</owl:Class>

The madeFrom relation holds between 
instances of ManufacturedThing and 
NaturalThing (sufficient)

When the domain of a madeFrom relation is 
an instance of Wine, the range is an instance 
of Grape (sufficient)



<owl:Thing rdf:ID=“fruit1” />
<owl:Thing rdf:ID=“drink1“>

<madeFrom rdf:resource= =“Fruit1”>
</owl:Thing>

Ñ
<ManufacturedThing rdf:resource=“drink1” />
<NaturalThing rdf:resource=“fruit1” />

Global Implications

drink1 madeFrom fruit1

drink1 type ManufacturedThing
fruit1 type NaturalThing

<owl:ObjectProperty rdf:ID="madeFrom">
<rdfs:domain rdf:resource="#ManufacturedThing" />
<rdfs:range rdf:resource="#NaturalThing" />

</owl:ObjectProperty>



<owl:Thing rdf:ID=“fruit1” />
<Wine rdf:ID=“drink1“>

<madeFrom rdf:resource=“fruit1”>
</owl:Thing>

Ñ
<Grape rdf:resource=“fruit1” />

Local Implications

drink1 type Wine
drink1 madeFrom fruit1

fruit1 type Grape

<owl:Class rdf:ID=“Wine"> <rdfs:subClassOf>  <owl:Restriction>
<owl:onProperty rdf:resource="#madeFrom"/>
<owl:allValuesFrom rdf:resource=“#Grape“ />

</owl:Restriction> </rdfs:subClassOf> </owl:Class>



Sub-Properties

<owl:ObjectProperty rdf:ID=“containedIn">
<rdfs:domain rdf:resource="#spatialThing" />
<rdfs:range rdf:resource="#spatialThing" />

</owl:ObjectProperty>

<owl:ObjectProperty rdf:ID=“locatedIn">
<rdfs:subPropertyOf rdf:resource="#containedIn" />

</owl:ObjectProperty>

If x is locatedIn y then x is containedIn y



Transitive and Inverse Properties

<owl:ObjectProperty rdf:ID=“containedIn">
<rdfs:type rdf:resource=“&owl;transitiveProperty” />

</owl:ObjectProperty>

<owl:ObjectProperty rdf:ID=“contains">
<owl:inverseOf rdf:resource="#containedIn" />

</owl:ObjectProperty>

If x is containedIn y and y is containedIn z 
then x is containedIn z

If x is containedIn y then y contains x



Implications

<place1 locatedIn place2>
<place2 locatedIn place3>

Ñ
<place1 type SpatialThing>
<place2 type SpatialThing>
<place3 type SpatialThing>
<place1 containedIn place2>
<place2 containedIn place3>
<place1 containedIn place3>
<place3 contains place2>
<place3 contains place1>
<place2 contains place1>

<owl:Thing rdf:ID=“place2” >
<locatedIn rdf:resource=“place1” />

</owl:Thing>
<owl:Thing rdf:ID=“place1” >
<SpatialThing rdf:resource=“place1” />

locatedIn subPropertyOf containedIn

containedIn is transitive
contains is the inverse of containedIn



Importance of Disjointness

• Many OWL constructs (e.g. range and domain) are 
necessary and sufficient
– Many frame and OO systems use only necessary

• Result is that types are inferred
• To generate “type mismatch” errors requires an 

inconsistency



<owl:Class rdf:ID=“Wine">
<rdfs:subClassOf>
<owl:Restriction>
<owl:onProperty rdf:resource="#madeFrom"/>
<owl:allValuesFrom rdf:resource=“#Grape“ />

</owl:Restriction>
</rdfs:subClassOf>

</owl:Class>
<owl:Class rdf:ID=“Grape” />
<owl:Class rdf:ID=“Color”>
<rdfs:subClassOf rdf:resource="#WineDescriptor"/>
<owl:oneOf rdf:parseType="Collection">
<owl:Thing rdf:about="#White"/>
<owl:Thing rdf:about="#Rose"/>
<owl:Thing rdf:about="#Red"/>

</owl:oneOf> 
</owl:class>

<wine1 type Wine>
<wine1 madeFrom White>

<owl:Class rdf:resource=“#Color"> 
<owl:disjointWith rdf:resource="#Grape"/> 

</owl:Class>

OK!! Ñ <White type Grape>

Leads to inconsistency



General Lessons

• Don’t argue about what an ontology is
• Building ontologies is engineering
• Knowledge-based systems rely on knowledge
• Using reasoning vs. specifying semantics
• Neither semantics nor web are new
• Difference between semantic web and RDF, OWL
• Difference between “Abox” and “Tbox”



For more information

• SW Best Practices WG:
http://www.w3.org/2001/sw/BestPractices/

• Webont WG:
http://www.w3.org/2001/sw/WebOnt/

• OWL Guide:
http://www.w3.org/TR/owl-guide/

• OWL Overview:
http://www.w3.org/TR/owl-guide/

http://www.w3.org/TR/owl-guide/


This slide intentionally left blank.



Example

• <owl:Class rdf:ID="Wine">
• <rdfs:subClassOf rdf:resource="#PotableLiquid" /> 
• <rdfs:subClassOf>
• <owl:Restriction>
• <owl:onProperty rdf:resource="#hasMaker" /> 
• <owl:cardinality

rdf:datatype="http://www.w3.org/2001/XMLSchema#nonNegativeInteger">1</owl:c
ardinality> 

• </owl:Restriction>
• </rdfs:subClassOf>
• - <rdfs:subClassOf>
• - <owl:Restriction>
• <owl:onProperty rdf:resource="#hasMaker" /> 
• <owl:allValuesFrom rdf:resource="#Winery" /> 
• </owl:Restriction>
• </rdfs:subClassOf>
• - <rdfs:subClassOf>
• - <owl:Restriction>
• <owl:onProperty rdf:resource="#madeFromGrape" /> 
• <owl:minCardinality

rdf:datatype="http://www.w3.org/2001/XMLSchema#nonNegativeInteger">1</owl:m
inCardinality> 

• </owl:Restriction>
• </rdfs:subClassOf>
• - <rdfs:subClassOf>
• - <owl:Restriction>

< l P t df "#h S " />



Finite Universes

• OWL Full includes the language elements in the Universe 
of Discourse, OWL DL does not

• OWL:THING in OWL-DL is an OWL:CLASS
• Thus it is legal to say:

– OWL:THING one-of (A)
– In OWL-Full, this entails all language elements are the same
– In OWL-DL, it does not
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