

The Semantic Interoperability Community of Practice (SICoP) of the Federal CIO Council

Brand Niemann

Co-Chair, Semantic Interoperability
Community of Practice (SICoP)
Enterprise Architecture Team,
EPA Office of Environmental Information

Notice:

In today's presentation, the part of Brand Niemann will be played by:

Ed Barkmeyer Interoperability Program NIST

Manufacturing Engineering Laboratory

Overview

- Who/what is SICoP?
- What are we doing?
 - White Papers
 - Annual Semantic Technologies for eGovernment Conferences
- Relationship to Enterprise Architecture and Service-Oriented Architecture
- Future Activities

Who we are

- The Semantic Interoperability Community of Practice (SICoP) is a group of <u>individuals</u> representing
 - a broad range of government organizations
 - industry and academic partners
 - no formal commitment from agencies or companies

Objectives:

- semantic interoperability as an operational characteristic of software used in Federal agencies.
- semantic data integration among software and data repositories provided by the Federal Government
- make the Semantic Web operational in members' agencies.

Who we are formally

- SICoP is a Special Interest Group (SIG) within the Knowledge Management Working Group (KMWG) sponsored by the Best Practices Committee of the Chief Information Officers Council (CIOC) of the U.S. Government.
- Responsibility: provide findings and recommendations to the Best Practices Committee
- Approach:
 - meetings, tutorials, conferences, pilot projects, etc.
 - promulgating best practices.

Organization Structure for Semantic Harmonization

Collaborating on Semantic Harmonization: Organizational Relationships

How did SICoP come about?

- 2002: Semantic technologies discussed in CIO Council XML Web Services Working Group
- 2002-03: Semantic Technologies for eGovernment Pilot
 - See http://web-services.gov
- 9/2003: Semantic Technologies for eGov Conference
 - See http://www.topquadrant.com/conferences/tq_proceedings.htm
- 10/2003: CIO Council Knowledge Management Working Group recommends Community of Practice
 - See http://Km.Gov
- 2003-04: Semantic Technology Training Series TopQuadrant/U. Maryland and other presentations
- 4/2004: SICoP Kickoff Meeting

SICoP Accomplishments

- First Semantic Technology for eGovernment Conference
 - at the White House Conference Center, September 8, 2003
 - http://www.topquadrant.com/conferences/tq_proceedings.htm
- 2nd Semantic Technology for eGovernment Conference
 - September, 2004
 - 40 Defense and civilian agencies represented
 - 50 major contractors represented. :
 - http://www.topquadrant.com/conferences/sept8_2004/stgov04_p roceedings.htm
- White Papers

SICoP Partnerships

- Federal XML Working Group
- Government XML CoP
- Ontolog Forum
 - Joint effort to "semantify" the Federal Health Architecture (FHA)
- other communities of practice

Contours of Practice

White Papers ("Modules")

- 1: Executive Summary: Semantic Technologies and the Vision of the Semantic Web
 - Jie-Hong Morrison, Computer Technologies Consultants, Ken Fromm, Loomia.
 - Published, 4 September 2004, at:
- 2: Exploring the Business Value of Semantic Interoperability
 - Irene Polikoff, TopQuadrant.
- 3: Implementing the Semantic Web
 - Michael Daconta, US Department of Homeland Security.

Semantics

- Semantics = a branch of linguistics that deals with the meaning of words and sentences
- Information Semantics = representation of meaning for computational systems and data
- Meaning changes by context and over time

Semantic Web

- an aggregation of websites and data stores
 - data with semantic markup
 - accessible semantic technologies and services
- Objective: improved response to information requests
 - better information relevance and confidence
 - automated rote search processes
 - intelligent reasoning and brokering agents
- critical infrastructure for the Semantic Web
 - conceptual frameworks
 - reference ontologies
 - well-understood contracts of interaction

Foundations of the Semantic Web

"The semantic web is not built on radical new technologies"

- established basis technologies
 - computer languages
 - information theory
 - (distributed) database management
 - model-based design
 - description logics
- "meaning" to software agents is based on well-defined formal structures stored with data

Semantic Interoperability

- a smaller problem than the Semantic Web
- use of semantic technologies and tooling to mediate data and meaning across contexts in a well-defined domain
- depends on reference models and dictionaries for the domain

Key components

- Technologies/languages
 - XML
 - RDF
 - OWL
- Reference "ontologies"
 - Taxonomies
 - Thesauri
 - Conceptual models (or schemas)
 - Logical theories

Ontology spectrum

3 Dimensions of Semantic Computing

Adapted by Richard Murphy, GSA (and SICoP Member).

Relationship to Enterprise Architecture

- Three levels of interoperability
 - Organizational Interoperability: common goals, interacting business processes, collaborations
 - Technical Interoperability: common networks, middleware, representation
 - Semantic Interoperability:
 correct interpretation of exchanged information
 by recipient in context
- Semantic Interoperability is a major concern in the FEA Data Reference Model

Relationship to Service-Oriented Architecture

- Service-Oriented Architecture
 - information and services provided by Web services
 - service boundaries are explicit
 - services are autonomous
 - services share schema and contract
 - policy controls compatibilities
- Semantic interoperability
 - schema and contract have conceptual models
 - client and service share interpretation
 - compatibility by common interpretation (and conversion when technical schemas differ)

NIST/MEL Interoperability Program

Scope

- product and process engineering
- manufacturing production and supply-chain operations
- Standard schemas and service interfaces
- Testing
 - standards conformance
 - interpretation consistency

Semantics

- ontologies for standard schemas and interfaces
- tooling for ontology development and mapping
- reasoners to support interpretation testing

Future SICoP Activities

Mandates

- The E-Government Act of 2002 (Categorization of Government Information)
- The Federal Enterprise Architecture
 Data & Information Reference Model (DRM)
- Selected Lines of Business
 (e.g., Data & Statistics and Federal Health Architecture)

Activities

- Individual E-Gov Initiatives and Agency Missions;
- White Paper Modules 2 and 3.
- Coordination with Semantic Web
 Best Practices and Deployment Working Group
- Semantic Technologies for eGovernment Conferences

SICoP Contacts

- Brand Niemann, EPA, SICoP co-chair
 - <u>bniemann@cox.net</u>, 1-202-236-6432
- Dr. Rick Morris, U.S. Army, OCIO (SICoP Co-Chair)
 - Rick.Morris@us.army.mil
- Harriet J. Riofrio, OASD NII DCIO IM (KMWG Co-Chair)
- Major contributors
 - Jie-hong Morrison, Computer Technologies Consultants, Inc.
 - Irene Polikoff and Ralph Hodgson, TopQuadrant, Inc.
 - Ken Fromm, Loomia, Inc.
 - Leo Obrst, The MITRE Corporation
 - Joram Borenstein, Unicorn Solutions, Inc.
 - Jeff Pollock, Network Inference, Inc.
 - Nancy G. Faget, U.S. Army Corps of Engineers
 - Mike Daconta, DHS

Websites

- CIO Council Knowledge Management WG http://www.km.gov
- Semantic Interoperability CoP (SICoP)
 http://www.web-services.gov
 (white papers, etc.)
- Collaboration site: http://colab.cim3.net

NIST Contacts

- Dr. Steven R. Ray
 - Chief, Manufacturing Systems Integration Division
 - Director, Manufacturing Interoperability Program
 - Steven.Ray@nist.gov, 1-301-975-3508
- Evan K. Wallace
 - Member, W3C Semantic Web Group
 - Chair, OMG Ontology SIG (Ontology Definition Metamodel)
 - ewallace@nist.gov, 1-301-975-3520
- Dr. Michael Gruninger
 - ISO Common Logic Model (SCL)
 - ISO 18629 Process Specification Language (PSL)
 - michael.gruninger@nist.gov, 1-301-975-6536
- Dr. Craig Schlenof
 - Automata service descriptions using OWL-S
 - schlenof@nist.gov

