
Rei and RulesRei and Rules
Tim Finin, UMBC
Lalana Kagal, MIT
Tim Finin, UMBC
Lalana Kagal, MIT

2 of 16

OutlineOutline

Motivation
Rei : a policy specification
language
Rei 4.0
Conclusions

3 of 16

MotivationMotivation
Objective: We want to influence, constrain and
control the behavior of autonomous programs,
services and agents in open, heterogeneous,
dynamic environments

E.g.: web services, pervasive computing environments,
collaboration tools, Grid services, multiagent systems, …

Problem: Conventional identity/authentication ap-
proaches to access control & authorization lacking
Approach: Agents reason about policies expressed
in a declarative language in support of decision
making, trust evaluation and enforcement.

4 of 16

An Early Policy for AgentsAn Early Policy for AgentsAn Early Policy for Agents
1 A robot may not injure a

human being, or, through
inaction, allow a human
being to come to harm.

2 A robot must obey the
orders given it by human
beings except where such
orders would conflict with
the First Law.

3 A robot must protect its own
existence as long as such
protection does not conflict
with the First or Second
Law.

- Handbook of Robotics, 56th
Edition, 2058 A.D.

5 of 16

It’s policies all the way downIt’s policies all the way down

In Asimov’s stories the robots didn’t
always follow the policy

Unlike traditional “hard coded” rules like
DB access control & OS file permissions
Policies define “norms of behavior”
We use policies to govern the failure to
adhere to other policies!

So, it’s natural to worry about …
How agents governed by multiple policies
can resolve conflicts among them
How to deal with failure to follow policies
– sanctions, reputation, trust, etc.
Whether policy engineering will be any
easier than software engineering

1 A robot may not injure a
human being, or,
through inaction, allow
a human being to come
to harm.

2 A robot must obey the
orders given it by hu-
man beings except
where such orders
would conflict with the
First Law.

3 A robot must protect its
own existence as long
as such protection does
not conflict with the
First or Second Law.

- Handbook of Robotics,
56th Edition, 2058 A.D.

6 of 16

Policies are the new blackPolicies are the new black
Machine understandable policies have been around
forever; think of file permissions and DBMSs.

But, there are many new domains that want policies:
DRM, content filtering, web services, Grid, P2P
extensions, etc.
… and a desire for better policy languages

Lots of work going on:
WS-*, SAML, XACML, EPAL, Ponder, KeyNote, etc.

Policy languages grounded in OWL: KAoS & Rei
KAoS has a (pure) DL approach
Rei’s approach uses DL + rules

7 of 16

hppt://www.cs.umbc.edu/pm4w/

8 of 16

Rei Policy Spec LanguageRei Policy Spec Language
Rei is a product of Lalana Kagal’s 2004 dissertation
An OWL based declarative policy language
Models deontic concepts of permissions,
prohibitions, obligations and dispensations
Uses meta policies for conflict resolution
Uses speech acts for dynamic policy modification
Used to model different kinds of policies

Security; privacy; team formation/
collaboration/maintenance; conversation
constraints

9 of 16

Applications – past, present & futureApplications – past, present & future

1999

2002

Coordinating access in supply chain management
system (EECOMS - IBM lead)

Authorization policies in a pervasive computing
environment (UMBC)

Policies for team formation, collaboration, information
flow in multi-agent systems (Genoa II (Topsail) - GITI lead)

Security in semantic web services (UMBC, SRI, CMU)

Privacy and trust on the Internet (UMBC)

Enforcing domain policies on handhelds in pervasive
computing environments (UMBC, NIST)

Privacy in a pervasive computing environment (UMBC)

Task Computing (Fujitsu)

2003

2004
…

10 of 16

Rei SpecificationsRei Specifications
Rei Ontologies

Core specs
Policy
Granting
Deontic Object

…
Action

Speech Act
…

Meta Policy
Constraint

Authoring aid specs
Analysis

11 of 16

ConstraintConstraint
Simple Constraints

Triple(Subject, Predicate, Object)

Example : Group of entities that are affiliated to the LAIT
lab

<entity:Variable rdf:ID=”Var1”/>
<constraint:SimpleConstraint rdf:ID=”IsMemberOfLait">

<constraint:subject rdf:resource="#Var1"/>
<constraint:predicate rdf:resource="&univ;affiliation"/>
<constraint:object rdf:resource="&univ;LAITLab"/>

</constraint:SimpleConstraint>

Boolean Constraints : And, Or, and Not

12 of 16

Four Aspects to Meta PolicyFour Aspects to Meta Policy
Behavior

ExplicitPermImplicitProh – what’s not permitted is forbidden.
ImplicitPermExplicitProh – what’s not forbidden is permitted.
ExplicitPermExplicitProh – no default

Priority
Priority between rules in the same policy
Priority between policies

e.g., Department policy overrides University policy

Modality precedence
e.g., Positive modality holds precedence over negative for CSDept
policy

Meta policy default
CheckModalityPrecFirst
CheckPriorityFirst

13 of 16

Modality PrecedenceModality Precedence
Example : To state that negative modality holds for
the CSDept and in case of conflict modality
precedence should be checked before priorities
<policy:Policy rdf:ID=”CSDeptPolicy">

<policy:context rdf:resource="#IsMemberOfCS"/>
<policy:defaultModality

rdf:resource="&metapolicy;NegativeModalityPrecedence"/>
<policy:metaDefault

rdf:resource="&metapolicy;CheckModalityPrecFirst"/>
</policy:Policy>

14 of 16

From Rules to DL and BackFrom Rules to DL and Back
Rei 1.0 started out ~1999 with a rule-based approach
implemented via a Prolog meta-interpreter

Subsequently translated to CommonRules XML format for interchange
and interoperability

Rei 2.0 used RDF to ground policies in sharable ontologies
Rei 3.0 embraced a DL approach to take advantage of
subsumption reasoning using F-OWL

Retained rule-like constraints for greater expressivity
Students permitted to use printers in labs with which their advisors are
association

Rei 4.0 may will revise its rule like aspects now that SWLR is
available

Motivations: formalization, flexibility, simplicity, understandability, …

15 of 16

To Be ExploredTo Be Explored
Simplify and reduce to essential form
Develop a solid formal semantics
Model/implement using Courteous Logic
Compile Rei policies to SWRL or RuleML to obviate
need for meta-interpreter
Additional features

Support static conflict detection
Provide explanation facility, including explanations for
“failed” expectations
Build on initial primitive Policy IDE

Interoperation with or translation between {Rei,
KAoS, …}

16 of 16

SummarySummary
Declarative policies are useful for constraining
autonomous behavior in open, distributed systems

Important for security, privacy and trust
These should be grounded in semantic web
languages (OWL!) for semantic interoperability
Rei and KAoS have provided a good base for
exploring this approach
SWRL and RuleML open interesting opportunities
for new declarative, rule oriented policy languages
Rei 4.0 will explore

17 of 16

For more informationFor more information

http://rei.umbc.edu/

18 of 16

backup slidesbackup slides

19 of 16

Implementation DetailsImplementation Details
USERXSB

Flora : F-logic over XSB
F-OWL : is a reasoner for
RDF, OWL
Java wrapper

XSB

FLORA FOWL

YAJXB

JAVA API

REI INTERFACE

REI

Image adapted from Mohinder Chopra

20 of 16

PriorityPriority
Example : To specify that the Federal policy has
higher priority that the State policy

<metapolicy:PolicyPriority rdf:ID="PriorityFederalState">
<metapolicy:policyOfGreaterPriority rdf:resource="&gov;Federal"/>
<metapolicy:policyOfLesserPriority rdf:resource="&gov;State"/>

<metapolicy:PolicyPriority>

Priorities for policies and rules must be acyclic (it is
possible to check this but currently not implemented)

Rei does not allow
University policy overrides department policy
Department policy overrides lab policy
Lab policy overrides university policy

21 of 16

AnalysisAnalysis
Use Cases (known as test cases in Software
Engineering)

Define a set of use cases that must always be satisfied in
order for the policies to be correct
E.g. The dean of the school must always have access to
all the grad labs

WhatIf
To check the effects of changes to the policy or ontology
before actually committing them
E.g If I remove Perm_StudentPrinting from the
GradStudentPolicy, will Bob still be able to print ?

22 of 16

Speech ActsSpeech Acts
Speech Acts

Delegation, Revocation, Request, Cancel
Properties : Sender, Receiver, Content (Deontic
object/Action), Conditions
Used to dynamically modify existing policies
Speech acts are valid only if the entities that make them
have the appropriate permissions

23 of 16

PolicyPolicy
Properties : Context, Grants, Default Policy,
Priorities

A Policy is applicable if the Context is true

Example
<policy:Policy rdf:ID=”CSDeptPolicy">

<policy:context rdf:resource="#IsMemberOfCS"/>
<policy:grants rdf:resource="#Perm_StudentPrinting"/>
<policy:defaultBehavior

rdf:resource="&metapolicy;ExplicitPermExplicitProh"/>
<policy:defaultModality

rdf:resource="&metapolicy;PositiveModalityPrecedence"/>
<policy:metaDefault

rdf:resource="&metapolicy;CheckModalityPrecFirst"/>
</policy:Policy>

24 of 16

GrantingGranting
Links deontic rules to policies with additional
constraints
Allows for reuse of deontic objects with different
constraints
Encourages modularity

Deontic objects and constraints can be defined by
technical staff
Policy administrator can drag and drop appropriate
deontic objects and add constraints

25 of 16

GrantingGranting
Example : Same permission used in Policy example
with extra constraints
<policy:Granting rdf:ID="Granting_PhStudentLaserPrinting">

<policy:to rdf:resource="#PersonVar"/>
<policy:deontic rdf:resource="#Perm_StudentPrinting"/>
<policy:requirement rdf:resource="#IsLaserPrinterAndPhStudent"/>

</policy:Granting>

<policy:Policy rdf:ID=”BioDeptPolicy">
<policy:grants rdf:resource="# Granting_PhStudentLaserPrinting"/>

</policy:Policy>

26 of 16

Deontic ObjectDeontic Object
Deontic objects

Permissions, Prohibitions, Obligations, Dispensations
(waiver for obligations)
Common Properties : Actor, Action, Constraint
{StartingConstraint, EndingConstraint}
StartingConstraint subproperty of Constraint

27 of 16

ActionAction
Two kinds of actions : Domain Actions and Speech Acts

Domain Actions
Properties : Actor, Target, Effects, PreConditions
Action(Actor, Target, PreConditions, Effects)
Action can be performed on Target only when the PreConditions are
true and oncce performed the Effects are true.

Example : Based on Rei
<action:Action rdf:ID=”EbiquityDeviceUsage">

<action:actor rdf:resource="#PersonVar"/>
<action:target rdf:resource="#ObjVar"/>
<action:location rdf:resource="&inst;EbiquityLab"/>
<action:precondition rdf:resource="#DeviceBelongsToEbiqLab"/>

<action:Action>

28 of 16

ActionAction
Example :

<owl:Class rdf:ID="CSPrinting">
<rdfs:subClassOf rdf:resource=”&univ;Printing"/>
<rdfs:subClassOf>

<owl:Restriction>
<owl:onProperty rdf:resource="&action;location"/>
<owl:allValuesFrom rdf:resource=”&inst;CSDept" />

</owl:Restriction>
</rdfs:subClassOf>

</owl:Class>

	Rei and Rules
	Outline
	Motivation
	An Early Policy for Agents
	It’s policies all the way down
	Policies are the new black
	
	Rei Policy Spec Language
	Applications – past, present & future
	Rei Specifications
	Constraint
	Four Aspects to Meta Policy
	Modality Precedence
	From Rules to DL and Back
	To Be Explored
	Summary
	For more information
	
	Implementation Details
	Priority
	Analysis
	Speech Acts
	Policy
	Granting
	Granting
	Deontic Object
	Action
	Action

