UML-Based Ontology Toolset (UBOT)

Lockheed Martin Integrated Systems & Solutions

PI: Paul Kogut

Key Researchers:
Jeff Heflin, Zhengxiang Pan – Lehigh University
Mitch Kokar, Ken Baclawski, Chris Matheus, Jerzy Letkowski - VIS/Northeastern Univ.
Richard Waldinger - Kestrel/SRI
Prasanta Bose - Lockheed Martin Advanced Technology Center
Yui Leung, Bill Holmes, Ted Mielczarek, Kathleen Ryan LM IS&S

November 2004
UBOT
Overall Program Summary

• What is the basic problem you are trying to solve?
 – Transition of Semantic Web technology to DoD practitioners is difficult
 • Ontology engineering is hard
 • Markup creation is time consuming
 • Application architectures and engineering tradeoffs are not well understood

• What was the technical solution strategy?
 – Apply software engineering principles:
 • Automated tools
 • Formal methods
 • Software architecture

• What were the basic elements of the research and program approach?
 – Ontology engineering - graphical tools and consistency reasoning
 – Automated markup generation – natural language processing
 – Architectures – quantitative reasoning benchmarks and design patterns
UBOT Ontology Engineering
Technical Problem/Approach/Progress

• How do we help mainstream software engineers move from OO development to Semantic Web?
• Build ontology engineering tools with team support based on COTS UML environments (Telelogic Tau)
• Build easy to use consistency reasoning tools (ConsVISor, BugVISor)
• Apply formal methods (Specware and SNARK) to verify DAML and OWL axiomatic semantics
• Influence OMG
 – Standard mapping between UML and DAML
• Metrics/success:
 – Partnership agreement with Telelogic
 – Initiated OMG Ontology WG
 – ConsVISor passed OWL semantics conformance tests and gives explanations of symptoms
 – Identified DAML semantics problems
How do we reduce the cost/effort required to mark up webpages and text?

Develop open service for OWL markup generation: AeroSWARM

Develop/implement approach to consistency checking of markup

Apply AeroSWARM to real world knowledge management problems:

- GOWLgle - Semantic filtering of Google results
- Cross-document co-reference

Metrics/success:

- Generate markup for 44 common properties with around 80% precision
- Helped many organizations implement this approach: UMBC, Horus, AT&T, Teknowledge, CIA, NGA, Tucana
• How do we choose appropriate reasoning infrastructures for large OWL applications?
 – Develop repeatable benchmark process and tools
 – Evaluate existing reasoning infrastructures
• How can we develop scalable reasoning infrastructures?
 – Develop approach for pre-computing all inferences and storing the results in a database for fast query response

• Metrics/success:
 – Voted best paper at ISWC 2004
 – 14 test queries representative of real applications
 – Generated data set with 6.8 million triples
UBOT Architectures and Design Patterns

Technical Problem/Approach/Progress

- How do we apply the Semantic Web to solve real problems for DoD, Intel community...
 - Develop prototype applications and disseminate design patterns:
 - Knowledge management/semantic filtering/assistant agents
 - Semantic web services/net-centric operations/sensors/fusion

- Metrics/success:
 - IEEE conference paper: *Semantic Web technologies for Aerospace*
 - CACM paper: *Proactive Information Gathering for Homeland Security Teams*
 - NASA Sensorweb http://cosec/lmsal.com
 - Demos: DAML experiment, GOWLgle
 - Tech transition support: CIA, NGA
2000
• homework 1 software engineering ontology
• homework 2 NLP and machine learning for DAML queries
• present to OMG Agent SIG UML models for DAML ontologies
• homework 3 NLP for text markup

2001
• demos: UML ontology engineering, ontology consistency checking, AeroDAML
• discover errors in DAML axiomatic semantics via theorem proving
• AeroDAML sent to UMBC for IT Talks
• sign partnership agreement with Telelogic UML vendor
• submit 3 HotDAML proposals: web accessible AeroDAML, ConsVISor, DAML VisuaLinks
• Lockheed Martin Joint Symposium XML+Semantics = DAML
• demo 3 HotDAML proposals
• organized OMG Software Services Grid Workshop - W3C OMG summit
• AeroDAML sent to Horus
• AeroDAML wins HotDAML award
• UML 2001 conf. Extending UML to support Ontology Engineering for the Semantic Web
2001
- presented *AeroDAML: Applying Info Extraction to Generate DAML Annotation* to:
 - Int. Conf. Knowledge Capture workshop
 - DARPA EELD kickoff
 - Semantic Web for Military Users

2002
- Lehigh University joins team
- Demo: AeroDAML front end for AT&T ontology driven knowledge dissemination
- NASA Sensorweb prototype - DAML-S applied to solar science
- Demo: AeroDAML integrated with Teknowledge MS Word markup tool
- OMG Web Services workshop – *Applying UML to model Semantic Web services*
- 1st ISWC – *Consistency Checking of Semantic Web Ontologies*
- Demo: DAML-S for ISR integrated with SONAT
 - Demo: DLDB precompute inferences and store in database
 - Worked with NG on Horus automated markup tool
2003

- IEEE Aerospace conf. *Semantic Web Technologies for Aerospace*
 - Demo: AeroSWARM
 - Demo: Lehigh University benchmark
 - 2nd ISWC *Benchmarking DAML+OIL repositories*
 - *DLDB: Extending Relational Databases to support Semantic Web Queries*
 - CIA Developers Forum *Semantic Web Technologies and Applications*

2004

- Demo: GOWLgle
- Demo: cross document co-reference
- Formally verified semantics for OWL full

- 3rd ISWC *An Evaluation of Knowledge Base Systems for Large OWL Datasets*
 - *Towards a Symptom Ontology for Semantic Web Applications*
UBOT Remaining Issues

<table>
<thead>
<tr>
<th>Issue</th>
<th>Remediation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Semantic filtering of text documents</td>
<td>Continue GOWLgle research</td>
</tr>
<tr>
<td>Cross-document co-reference</td>
<td>Utilize more clues and reasoning</td>
</tr>
<tr>
<td>Need more reasoner benchmarks and data</td>
<td>Apply Lehigh benchmark to COTS reasoners, benchmark SWRL and matchmakers</td>
</tr>
<tr>
<td>How do we do matchmaking in heterogeneous dynamic hostile environments like net-centric operations?</td>
<td>Investigate fault tolerant peer to peer approaches</td>
</tr>
<tr>
<td>How does service composition and discovery interact?</td>
<td>More large scale experiments</td>
</tr>
<tr>
<td>Consistency checking of SWRL</td>
<td>Extend ConsVISor</td>
</tr>
<tr>
<td>Ontology engineering is still hard – average practitioner not equivalent to DAML researcher</td>
<td>Machine learning, cognitive science, advanced NLP, intelligent assistants, reasoners with explanation</td>
</tr>
</tbody>
</table>
Summary

- We did our part to change the world by contributing a software engineering perspective:
 - **Ontology engineering is hard**
 - We developed practical semantic consistency checking tools
 - We helped bridge OMG and W3C
 - **Markup creation is time consuming**
 - We pioneered application of NLP for markup generation
 - **Application architectures and engineering tradeoffs are not well understood**
 - We developed and disseminated design patterns
 - We established a framework for choosing appropriate Semantic Web reasoning infrastructures
 - **AeroSWARM, ConsVISor and Lehigh Univ. Benchmark are available on semwebcentral.org**
(Program Name)
Backup