Ruby << RDF | OWL

Programming with the Semantic Web
Rich Kilmer, InfoEther LLC

Ax SemWebCentral

Overview

® Quick introduction to Ruby
= Semitar library
® Processing RDF & OWL with Semitar

® From object-oriented to property-
based programming

= Future directions of Semitar

ONTIA

Created by Yukihiro Matsumoto (1993)
Dynamic object-oriented scripting language
* Everythingis an object (a la smalltalk)

* Noscalers
* Classes/Objects are open

Powerful text processing
* Regular expressions with Perl 5 engine

Lambdas & continuations [a la lisp]
Easily extensible InC
Extensive libraries

ONTIA

Semitar - RDE

Model-centric RDF library

= Sources
e URL Source
* File Source
= Parsers
* Pure Ruby N-triples/rdf-xml Parsers
* Native extension wrapper for libraptor
= Generators
* N-triples
" QueryEngine
* RDQL Inspired

ONTIA

Sample Semitar RDEUsage

require ‘semtar’
nodel = Semitar.new rdf nodel

nodel .l oad file “file:tself.oWm”, “rdfxm”

nodel . add_st andar d_nanespaces

nodel . add _nanespaces(
toff' => "http://ww. dam . org/ 2001/ 10/ of fi ce/ of fi ce#',
‘troy' => '"http://ww. danl . org/ people/tself/tsel f#

)
mat ches = nodel . query(:desk, :office) do
where [: desk, "<rdf:type>", "<of f: Desk>"],
[: desk, "<off:location>", :office],
[:office, "<rdf:type>", "<of f: OFfice>"]
filter { desk.uri.include?('deskl') }
end

mat ches. each do | mat ch|
puts “Desk = #{match. desk}, office = #{ match. office}”

end t’:trﬂﬂﬂ(

Hasbyy o« RIE 1ML

Semitar - OWL

= Dynamic extension to RDF model

= QWL Classes

* Named, anonymous, restrictions, axioms, complete class
axioms, advanced constructors

= QWL Properties
* (QObjectProperties
* DataType Properties
* Annotation Properties
* Property axioms
= QWL Individuals
* Axioms, properties, types
= Validation (coming soon)
* Ontology/Individuals

O XA

Hasbyy o« RIE 1ML

Sample Semitar OWL Usage

require ‘semtar’
nodel = Semitar.new rdf nodel

nodel .l oad file “file:ebiquity.ow”

nodel . i ncl ude_ow
nodel . parse_ow _ont ol ogi es

nodel . each_owl cl ass do |kl ass|
puts kl ass
end

nodel . each_obj ect _property do | op|
puts property

puts “ Ranges:”

op. ranges. each {|range| puts * #{range}”’}

puts “ Donmains:”

op. domai ns. each {| domai n| puts #{domai n} "}
end

O XA

Hasbyy o« RIE 1ML

From Object-Oriented Programming

® ‘Classic’ object-oriented
programming
* Class based
= Java, C++, Ruby
* Prototype based
= Self, Javascript, 10
" Qperation-centric
ontology design

¢ Methods exist in the
context of a Class

* Encapsulation rules the
day

[BasicSocket

recv

]

send

]

[TCPSocket

address

]

N S

Peer-addres

—

S

socket object

ONTIA

o/ Property-Based Programming

= QWL ontologies

* Class membership is dynamic
= Asserted through <rdf:type>
= |Inferred based on properties and/or axioms
= Anobject's classes change based on ‘knowledge’

* Properties are fully-namespaced and separate
‘objects’

= Structure-centric ontology design
= ‘Behavior’ is not expressed

" Toward property-based programming model
* Dynamic class capabilities of OWL
* Mixing in of behaviors (methods) based on changing

memberships at runtime

ONTIA

Property-pased Programming

== Subclass/property

== Domain T
- \module A]
Range ex:Person L
([module B]
ex:parentOf ex:Parents J I
(&
|
(! module C]
ex:MotherOf ex:Moms J
(&
Lmodule D]

i
e

ex:parentOf
ex:motherOf

ex:Female J

O XA

|I,|J1:.' i

RIE | CAYL

Euture Directions ofi Semitar

" Add unit testing suite
e Use the RDF/OWL test documents

" RDF
* Generation of RDF-XML
* RDF Schema (normalize properties model)

" OWL/RDFS query engine

" Expand Property-based programming ideas

* Runtime engine
= Persistence
= Distribution

* Application examples

ONTIA

Ruby << RDF | OWL

Questions?

Rich Kilmer, InfoEther LLC
rich@infoether.com

Ax SemWebCentral

