Hoolet: An OWL Reasoner with Support for Rules

Sean Bechhoefer, Ian Horrocks
University of Manchester

http://owl.man.ac.uk/hoolet
Reasoning with OWL

• OWL DL has a “standard” first-order style semantics
• This allows us to use known results from Description Logic research to build reasoners for OWL
 – FaCT, RACER, Pellet
• However, the expressiveness of “full” OWL DL causes some problems
 – Currently no know effective algorithms in the presence of cardinality, inverses and enumerations
 – Reasoners such as FaCT and RACER “pretend” to handle one-of.
• Can we use alternative reasoning engines?
OWL and First Order Reasoning

- An alternative approach is to translate OWL DL into equivalent FOL axioms and then use a FO prover to provide inference.
- Disadvantages
 - In general this compromises decidability, although a FO reasoner may be able to apply a complete strategy.
 - DL reasoners have been specifically optimised to handle DL style reasoning tasks. FO reasoners may require extra tuning to handle the tasks created.
- Advantages
 - Can handle all of OWL DL
 - Can be extended to deal with language extensions such as SWRL.
Hoolet

- A (prototype) OWL reasoner using a First Order prover.
- OWL ontology translated to equivalent axioms using the standard TPTP format.
- Axioms then passed to Vampire for satisfiability testing.
- Queries are translated to conjectures which are added to the theory.
- Hoolet may not be a very effective reasoner
 - This naive approach is not likely to scale well.
- However, it does provide a useful tool for use on small illustrative examples.
 - And may form part of an effective reasoning infrastructure
<table>
<thead>
<tr>
<th>Example Translations</th>
<th>8 x. $ \mathbf{A(x) , , B(x)}$</th>
</tr>
</thead>
<tbody>
<tr>
<td>Class(B complete A)</td>
<td>8 x. $\mathbf{A(x) , , B(x)}$</td>
</tr>
<tr>
<td>SubClassOf(intersectionOf (A B) unionOf(C D))</td>
<td>8 x. $\mathbf{(A(x) , , B(x)) , , C(x) , , D(x)}$</td>
</tr>
<tr>
<td>Class(B partial restriction(p someValuesFrom A))</td>
<td>8 x. $\mathbf{B(x) , , (9 , , A(y) , , p(x,y))}$</td>
</tr>
<tr>
<td>Class(A complete one-of(a b c))</td>
<td>8 x. $\mathbf{A(x) , , (x=a , , x=b , , x=c)}$</td>
</tr>
</tbody>
</table>
Satisfiability Testing

- OWL in RDF/XML
 - Parsing
 - OWL Ontology
 - Rendering
 - TPTP Theory
 - Reasoning
 - Vampire
 - Unsatisfiable: NO
 - Satisfiable: YES
 - Unknown: ??

- Hoolet
Query

OWL in RDF/XML

- Parsing

OWL Ontology

- Rendering

TPTP Theory

- Reasoning

Vampire

- Unsatisfiable: YES
- Satisfiable: NO
- Unknown: ??

¬A(x)

x ∈ A?
• It is easy to extend Hoolet to handle SWRL rules.
• Each rule is simply translated to an axiom according to the semantics of the rules, with free variables universally quantified.

\[
\text{hasParent}(?x,?y), \text{hasSibling}(?y,?z), \text{male}(?z) \rightarrow \text{hasUncle}(?x,?z)
\]

translates to:

\[
\forall x,y,z. \text{hasParent}(x,y) \land \text{hasSibling}(y,z) \land \text{male}(z) \rightarrow \text{hasUncle}(x,z)
\]

• Rules are then added to the theory.
Adding Rules

OWL in RDF/XML

Parsing

OWL Ontology

OWL Rules

SWRL in RDF/XML

Rendering

TPTP Theory

Reasoning

Vampire

• Unsatisfiable: YES
• Satisfiable: NO
• Unknown: ??

Hoolet
Hoolet Application

- Hoolet supplies a simple GUI for loading ontologies and rules
 - Uses **WonderWeb OWL API** for parsing and representation.
 - (Ab)uses **Vampire** prover for reasoning.
- Ontologies should be represented using OWL in RDF/XML
- Rules are represented using a (possibly idiosyncratic) RDF schema.
 - Restrictions on rule atoms: only classes allowed.
- Simple Queries:
 - satisfiability
 - subsumption
 - retrieval.
- Prototype from http://owl.man.ac.uk/hoolet