Bubo - Implementing OWL in rule-based systems

Raphael Volz
Institute AIFB
University of Karlsruhe (TH)
D-76128 Karlsruhe, Germany

volz@aifb.uni-
karlsruhe.de

ABSTRACT

The Semantic Web is build around a semi-structured data model -
RDF - and an explicit conceptualization for such data - so-called
ontologies. A standardized language for the specification of the
latter has recently be proposed by the W3C. This paper explores
the strategies for the implementation of this language in logic pro-
gramming environments such as Prolog and relational databases.
Along these lines we establish the subset of OWL primitives that
is compatible for further rule-based extensions paving the way to
the upper levels of the Semantic Web layer cake. We also capture
asubset, for which query languages can easily be implemented by
compiling expressions given in a declarative query language to the
query language offered by the system on top of which the imple-
mentation is based.

1. INTRODUCTION

The Semantic Web is build around a semi-structured data model
- RDF - and an explicit conceptualization for such data - so-called
ontologies. A standardized language for the specification of the
latter has recently be proposed by the W3C. This language, OWL
[12], is based on a description logic SHIQ [8]. Description log-
ics offer efficient support for questions about a conceptualization,
namely whether classes are equivalent or digoint to each other,
whether a class subsumes another class, or whether a given class
description is satisfiable at all.

The Query language perspective. However, the capabilites
of description logics with respect to instances is rather low. It can-
not even express the |east-expressive query language usually taken
into account by database research - conjunctive queries [3]. This
areaisastrong hold of logic programming, which offers highly ex-
pressive constructsfor instance reasoning. Hence, it isvery promis-
ing to combine description logics with this paradigm to obtain the
ability to state expressiveinstance queries on terminological knowl-
edge bases.

Therule language perspective. Another perspective for this
combination is the extension of OWL knowledge bases with logic
program rules, which offer further modelling capabilities. Thelayer
of rule languages has already been envisioned by Tim-Berners Lee
in his famous Semantic Web layer cake (cf. Figure 1) and alarge
group of people from the logic programming community are work-
ing on RuleML?, a possible candidate for this layer. However,

Lhttp:/fwww.dfki.uni-kl.de/ruleml/

Copyright is held by the author/owner(s).
VWWMW2003, May 20-24, 2003, Budapest, Hungary.
ACM XXX.

Stefan Decker

ISI

University of Southern
California (USC)
Marina-Del-Rey, CA

stefan@isi.edu

Daniel Oberle
Institute AIFB
University of Karlsruhe (TH)
D-76128 Karlsruhe, Germany

oberle@aifb.uni-
karlsruhe.de

RuleML is not layered on top of the ontology layer, as envisioned,
instead it operates on the data layer only. Hence, the ontology and
rules worlds are split. Our approach establishes alink between the
two worlds and opens the possibility to state rules on top of termi-
nological knowledge bases.

The data integration perspective. The majority of today's
data resides in relational databases. This will not change when
the Semantic Web grows. Most likely people will start export-
ing their data as RDF instances according to some ontology they
have chosen. This essential leads to datathat is replicated to enable
ontology-based processing of that data. Today, the latter is done
by reading some files into a classifier, such as FaCT [8] or Racer
[6]. However, logic programming systems such as XSB [15] allow
to access database data directly through built-in predicates. Fur-
thermore, stratified Datalog programs, a restricted variant of logic
programswith limited expressivity, can directly beimplemented on
top of SQL99-compliant relational databases. Hence, a L P-based
implementation of OWL allows a closer interaction with live data.

The implementation perspective. Currently, no full imple-
mentation of OWL isavailable. In order to become a success many
implementations of OWL must be available. Many free and com-
mercial implementations of logic programming systems are avail-
able. SQL99-compliant databases enjoy an even wider user com-
munity. This paper shows how these systems can be used asabasis
for reasoning with OWL.

The paper isstructured asfollows. Section 2 givesashort overview
about the relation between the aforementioned Semantic Web lay-
ers and gives a brief introduction to OWL. Section 3 shows how
instance data may be represented in LP systems and discusses the
chosen representation with respect to efficiency and ease-of inte-
gration with legacy data sources. Section 4 details the basic princi-
ples used to map of OWL ontologies to L P knowledge bases. Sec-
tion 5 discusses the mappingsin detail and establishesthe OWL/LP
fragment. The subset of LP, which can be implemented on top of
relational databasesis presented in Section 7. Section 6 introduces
our prototypical implementation. We conclude discussing related
work summarizing our contribution and giving an outlook to future
work.

2. THE SEMANTIC WEB

2.1 Thebasicidea

Theterm Semantic WWeb encompasses effortsto build anew WWW
architecture that enhances content with formal semantics. Thiswill
enable automated agents to reason about Web content, and carry
out more intelligent tasks on behalf of the user. Expressing mean-

[o Builes | Trust
i Data Proof ;
oy (v |t | &
desc, _ 1 Ontodogy vocabulary :'E
doc. ROF + ndfschema E
XML + NS « xmilschema

Figure 1: Semantic Web Layer Cake

ing is the main task of the Semantic Web. In order to achieve
this objective several layers of representational structures are en-
visioned. Figure 1 presents the layers of the Semantic Web: (1) the
XML layer isused as a syntax layer, (1) the RDF layer represents
the data layer, (I11) the ontology layer, based on aforma common
agreement, specifies meaning and structure of the data, (1V) the
logic layer provides rules that enable further intelligent reasoning,
(V) the proof layer supports the exchange of proofs in inter-agent
communication.

2.2 The XML syntax layer

XML allows users to add arbitrary structure to their documents
but says nothing about what the structures mean. Tag-names per
se do not provide semantics. The Semantic Web utilizes XML for
syntax purposes only.

2.3 TheRDF data layer

The Resource Description Framework [10] is an infrastructure
that enables encoding, exchange and reuse of structured metadata.
Principally, information is stored in the form of RDF statements,
which represent data in an uniform way (subject, predicate, ob-
ject). This simple edge-labeled graph model facilitates machine
understandability by resolving syntactic ambiguities. This abstract
model is serialization independent, though the proposed standard
serialization relies on XML. Unfortunally, the semantics specified
for this layer already defines first entailments. Hence, systems op-
erating on RDF data should provide some reasoning mechanisms
to gain full compatibility with the standard. Due to the general-
ity of the data model RDF offers modelling primitives that can be
extended according to the needs at hand.

2.4 Specifying meaning - the ontology layer

The generality of RDF alows to build the third basic compo-
nent of the Semantic Web - ontologies. In Artificial Intelligence
and Web research the term ontology describes a formal, shared
conceptualization of a particular domain of interest. By defining
shared and common domain theories, ontologies help both people
and machines to communicate concisely, supporting the exchange
of semantics and not only of syntax.

Imagine asimple genealogy application. Apparently, the domain
description, viz. the ontology, will include classes that talk about
Persons and make a distinction between Males and Females . Peo-
ple are related with each other by several relations expressing par-

enthood and siblings. Ergo, properties like hasParent, childOf etc.
will bein place. This domain description can be easily constructed
with standard description logics (cf. Figure 2) .

Very recently a working group at W3C has continued the work
of severa research programs to come up with a recommendation
for an ontology language. The language has two layers of prim-
itives: areduced set called OWL Lite and a full set of primitives
OWL/DL. OWL/DL corresponds largely to an established descrip-
tion logic variant called SHI(Q [8]. A Description logic is defined
recursively by starting from a schema S of class names CN, prop-
erty names PN and names for individuals ZN. The semantics of
terms is given denotationally, using the notion of an interpretation
T =< AT, ()T >, which starts with a domain of values A and a
mapping (-)* from class descriptions to subset of the domain, and
property descriptions to sets of 2-tuples over the domain. Each in-
dividual name is associate to some valuein AZ. The Interpretaion
function is extended recursively to composite descriptions as given
in Table 2.4.

The meaning of a description D is the mapping from interpreta-
tions Z to extents D and a variety of queries can now be defined
on this basis, () whether a description £ subsumes D, thisis the
case iff for every interpretation Z, D C EZ. (Il) whether a de-
scription D is coherent/satisfiable, thisisthe caseif thereisat least
oneZ suchthat DF = (, and (I1l)whether descriptions E and D are
digoint, thisisthe caseiff for every interpretation Z, D N E* = ().

The reader may note, that OWL additionally features the primi-

tivesFunct i onal Property,l nver seFuncti onal Property

2 and Symmet ri cProperty. All can straightforwardly be ex-
pressed via a combination of other primitives provided in SHIQ.
For example, aSymet ri cPr operty can be expressed by say-
ingthat itisinversetoitself (Pi nver seXX P).

A further layer of OWL with an extended semantics that is fully
compatible to the RDF semantics is also defined in the specifica-
tion, but not considered here since no efficient reasoning strategies
are known for this variant. Also we do not consider the issue of
datatypes, which is still under active discussion.

2.5 Further reasoning - Thelogic layer

While the ontology layer already provides means to deduce new
information and provides restricted reasoning support, many appli-
cations require further means to combine and deduce information.
If we return to the given example, the sisters and aunts of a person
have to be stated explicitly. However, within arule-based system, it
is easy to build rules which capture those facts automatically, e.g.:

sisterOf (X, Y) :- childO (X 2), childO(Y,2z), Wman(Y).
auntf (X, Y) :- childOr (X 2Z), sisterOf(zY).

Logic programming systems, such as Prolog, HiLog[4] and Frame
Logic [9], offer efficient environments to do so.

A large group of people from the logic programming community
are working on a standard for exchange of rules in the Semantic
Web called RuleML3. Although a possible candidate for this layer,
RuleML is not layered on top of the ontology layer, as envisioned,
instead it operates on the data layer only. Hence, the ontology and
rules worlds are split. This paper therefore investigates how those
two worlds can be related to each other. Not surprisingly, as we
will seein section 4, the worlds are not digoint.

Figure 3 sketches the semantic relation between RDF, OWL and
the world of rules. We will establish two intersections of OWL
and logic programming: OWL/LP (red) and OWL/Datalog (pur-
ple). The OWL/Datalog fragment can be safely implemented on

2not shown in the table
3 http:/Awww.dfki.uni-kl .de/ruleml/

OWL Primitives Interpretation

Thing AT

Nothing @

C subClassOf D c* c Dt

C unionOf D c*tuDp?

C intersectionOf D ctnp*

complementOf C AT\CT

C digointWith D cInpf=0

P subPropertyOf Q PTC @t

C sameClassAs D ct =D*

P samePropertyAs Q Pt =@Q*

x samelndividual As y zt =y7

x differentindividualFromy zZ € AT\ {y}

TransitiveProperty P Vp, q,7[(p,q) € PTA
(¢,r) € PT —
(p,7) € P*]

SymmetricProperty P Vp,q[(p,q) € P «
(¢,p) € P*]

P inverseOf Q P =Q"

PminimumCardinality Cn {z € AZ|#{y|(z,y) € P*A
yeCT} >n}

P maximumCardinaity Cn {z € A% |#{y|(z,y) € PTA
yeCTl < n}

P allValuesFrom C vz, y[(z,y) € P —
y € C7]

P someValuesFrom C Va3y[(z,y) € PTA
y € C7]

P hasValueb Vz[(x,b) € PT]

oneOf (b1, ba, ..., bi, bn) {b%,...,b%}

Table 1: OWL Primitivesand their semantics

top of relational databases using known techniques such as magic
templates [13], while OWL/LP can be easily implemented in Pro-
log variants such as XSB [15]. The later involves further steps
such as the implementation of skolemization to substitute existen-
tial quantifiers by functions and the axiomatization of equivalence
(cf. 4).

The established fragments can then be extended with additional
rules operating on the ontology to obtain the intended reasoning
support. If an appropriate exchange syntax is standardized for such
rules, this extension can also be communicated across systems.

3. DATA REPRESENTATION

OWL ontologies are syntactically represented in RDF. RDF al-
lows a very simple form of representation, which maps each RDF
statement to one logical ternary predicate such as chosenin [14, 2]:

st at enent (subj ect, predi cat e, obj ect)

Here, subject and predicate correspond to RDF resources and ob-
ject is either a RDF resource or a RDF datatype/literal. This ver-
tical form of representation is often chosen to representing sparse
data with a large number of attributes such as found in many e-
Commerce or digital library scenarios[1].

The usage of such asingleternary relation for storage of directed
|abelled-graphs such as RDF seems to be the most simple solution.
On the other hand, each resource-value pair could be stored in a
separate binary relation on a per property basis. The evaluation of
[1] suggests that this representation also dlightly outperforms the
naive ternary representation.

-» hasParent > <---

< childOf

Animal

Person

@ hasParent Man Woman
allValuesFrom

Person

OWL Definitions
Class Definitions

Person subClassOf Animal
Male subClassOf Animal
Man subClassOf Person Man subClassOf Mae
Woman subClassOf Person Woman subClassOf Female
Person subClassOf (hasParent allValuesFrom Person)

Male disjointWith Female
Female subClassOf Animal

Property Definitions
hasFather subPropertyOf hasParent hasParent inverseof childOf
hasMother subPropertyOf hasParent

Figure 2: Genealogy Ontology example

3.1 Dataintegration perspective

From a perspective of integrating existing data the binary rep-
resentation offers additional benefits (cf. Figure 4. Existing data
can be transformed to the appropriate binary form by means of re-
lational view definitions. Such aview definition may also integrate
multiple source tables by means of using the union operator. Using
asingleternary representation would yield asingle view definition,
which is very complex to write and maintain and will ultimately
lead to very poor performance dueto the complexity of theinvolved
query.

For example in Figure 4 several properties defined in the ontol-
ogy have to be associated with concrete data that is stored in sev-
eral relational tables. The mapping between the ontology and this
live data is done by transforming the source data in several binary
representations using SQL views. During this process data can be
transformed, e.g. table columns can be concatenated. Keys from
each table are trandated to globally unique URIS and used as in-
stance idenfiers*. Each binary view is then used as data source for
building the extension of the respective property in the ontology.
The reader may note that additional indirections have to be used to
cope with derived facts in ObjectProperties (cf. Section 7)

3.2 Trandation to predicates

“In the example this is done by appending a URI prefix, which
has to be unique for each table. In case of compound keys a more
sophisticated approach has to be used, e.g. coding each key com-
ponent as parameters.

/ /7\ Prolog
{, '\ Datalog
L\ |
RDF N / OWL-DL
OWL-Full

Figure 3: Relation between Horn Clause Programs, RDF and
OWL

<owl:DatatypeProperty
rdf:id = "X:name" />

[o]

Data

_zzziy---7N D

ID(PK) Firstname | Lastname | Title

! Raphael _| Voiz Dipldnf._| 10 [oK) Tinstitute | Dept. (FK) [Head (FK) | Building
2 Rudi Stwder | Protor__| 10

. Lo [ars |78 [2 [3021
3 Daniel Oberle Dipl-inf,__| 10

Person M

Source Data

Figure 4: Integration of source data

RDF statements are written as binary predicates. Here the pred-
icate of the statement is the name of the Datalog predicate. Hence,
if (a,b) isinstance of property P, we write the fact

P(a,b). @

In our approach this representation is extended with additional
unary relationswhich are used to store the class-individual relation-
ship, where a separate predicate is created for each class. Hence,
additionally to writing type(a, C)., facts stating that a is an in-
stance of aclass C, we write the fact

C(a). @

This syntactic construction supports a more efficient processing
of class extensions. Otherwise we would have to add rules, that
distinguish between all three use cases of the RDF t y pe predicate:
classinstantiation, class and property definition. Asaside effect, a
catalogue of classes and properties of their respective OWL type®
is created.

4. OWL TRANSLATION PROCESS

This section now presents how and which parts of OWL can be
implemented in logic programming environments. The tranglation
is achieved through a mapping operator 7 that is applied recur-
sively such asdonein [3]. It takes DL-constructs as parameter and
yields an unary predicate C'(x) for classes 7%(C') and a binary
predicate P(x,y) for properties 7 (P) and thereby fits into the
aforementioned data representation scheme.

In order to trandate n-ary class constructors such as union, enu-
meration and intersection, (n-1) intermediate anonymous class ex-
pressions are built, that provide a pairwise combination of descrip-

Ssuch as ObjectProperty, SymmetricProperty etc.

OWL Class Expressions 7*(C)

Thing T=x
Nothing —(z=1z)
C subClassOf D Vz[T*(D) «— T*(C)]

C unionOf D

C intersectionOf D
complementOf C
C digointFrom D

T=(C)V T*(D)
T*(C) AT*(D)
~T*(C)

~Z(T*(C) = T*(D))

P alValuesFrom C Vy[TY(C) «— T™Y(P)]
P someVauesFrom C Fy[TY(C) NT™Y(P)]
C sameClassAs D Vz[T*(C) « T*(D)]
P hasValue b Jy(y = b) A T5Y(p)

Table 2: Some OWL Class Constructors and their translation
in FOL following

tionsin a nested manner. For example the DL expression like
C=DnNENFNG
istrandated to the following set of descriptions
C=A3,A1=DNE,AA=ANF A3 =ANG

The reader may note, that this translation does not alter the speci-
fied semantics.

4.1 Trandationto FOL

Borgida [3] showed how a prototypical description logic DL,
which is a superset of OWL, can be correctly translated into first
order logic (FOL). Table 4.1 provides the appropriately adopted
trandation for OWL class expressions. In order to provide a trans-
lation for cardinality constraints[3] extendsthe syntax of FOL with
counting quantifiers to map those DL constructors. The reader may
note, that an alternative mapping to the unmodified FOL ispossible
using inequalities, but would lead to a more general subset of FOL
than intended by [3].

The above mentioned trandations are formula of FOL. Hence,
the results cannot be directly transferred to Logic Programming
environments, since only a subset of FOL is allowed there. The
following sections discuss which fragment can be translated to LP.
To proceed we first introduce our notion of LP.

4.2 Characterization of logic programming

Logic Programming is the language of first-order Horn clauses
often extended with a closed-world negation and arithmetic predi-
cates. The reader may note that the Horn clause form involves only
universally quantified variables.

The basic elements of the language are predicates and terms.
Terms can be either constant symbols such as names (so-called
atomic values) and numbers (integer, float ...) or logical variable
symbols. Usually variables and constants are distinguished by syn-
tactic convention. In the following all variables will start with an
upper-case letter. Each logical variableis a placeholder for another
value, which can be instantied by substituting it by another term.
However, it cannot be assigned directly.

Logic programs are composed of goals, queries and implications
(also called clauses). Goals are syntactically represented by a pred-
icate:

P(T1, ..., Ty) (3

This states that predicate P is true of terms 77 and al other T;.
Queries are syntactically represented as a set of goals:

by B, By (4

This retrieves al F;. Clauses are syntactically written like impli-
cationsin Prolog:

EO : —El,...,En. (5)

Thismeans, that E, must betrue, if all E; areasotrue. Ey isaso
called the head of the clause, while the remaining E; are called the
body of the clause. The body of the clause may be empty. Then
the clause is called a fact. The clause is also referred to as arule
if the body is nonempty. We speak of recursive rules if a predi-
cate appears in both the head and the body of arule. Each rule
corresponds to a FOL formula, where al occuring variables are
universally quantified. This forumla contains a single implication
between body and head. The body itself is translated to a conjunc-
tionof literals. For example, therule Eo (X, Y) : —E1(X), E2(Y)
corresponds to the following FOL formula

VX,Y : (E1(X) A E3(X)) — Eo(X,Y)
4.3 Handling existentials

Many translations of OWL descriptionsinvolve existential quan-
tification. To implement existential quantification, aprocedure called
Skolemization must be applied.

Skolemization is a syntactic transformation routinely used in au-
tomaticinference systemsin which existential variablesare replaced
by 'new’ functions applied to universal variables appearing in front
of the existential quantifier of the variable. If the original formula
is satisfiable, then so is the skolemized formula

4.4 Handling equivalence

Many trandlations of OWL descriptions require the use of equiv-
alence. However, an equivalence predicate is usually not available
in Logic Programming environments. We therefore have to provide
such a predefined predicate and must establish the correct seman-
tics. This behavior may be realized by capturing the five axioms
of the equivalence. Reflexivity, Symmetry and Transitivity ensure
that the equality predicate possess the algebraic properties of equiv-
aence relation:

= (z,2) « (6)
= (z,y) <= (y,) @)
= (.%',Z) —= (x,y),: (y,z) (8)

The axioms of substitutivity ensuresthe correct semantics of equiv-
alence when function and predicate symbols, e.g. when

= (¢, d) NQ(c)
holds, then also Q(d) for &l predicates Q.
= (f(xh “73771)7 f(y17 "7y"l)) — {: ('TZ?yl)‘l g Z g TL} (9)

Q(‘Th "7:1;71) — Q(yla 0ty y”l) U {: (:Eﬁyl)‘l < Z g Tl} (10)
[7] shows that such an axiomatization renders exactly the same se-
mantics asthe built-in predicate = in FOL. The reader may note that

the axioms of substitutivity have to beinstantiated for all predicates
Q@ and functions f used in the rule base.

5. TRANSLATIONTOLP
5.1 OWL Lite- RDF Schema Features

This section derives an horn clause axiomatization (suitable for
logic programming systems) for the RDF Schema features of OWL
Lite[11]. In correspondence to OWL, we focus only on the domain

modelling capabilities of RDF Schema and, e.g., don’t deal with
the definitions that create new metaclasses by defining subclasses
of rdf s: d ass.

The two basic modelling primitives provided are classes and
properties. As detailed in section 3, Classes are represented as
unary predicates, properties are represented as binary predicates.

The domain modelling part of RDF Schema consists of four ad-
ditional primitives, namely

e rdfs: subd assOf : Foreach(C rdfs: subd assOf
D) relationship an implication is generated, making explicit
that each instance of C' is aso an instance of D. The fol-
lowing rule pattern expresses the r df s: subCl assOf re-
lationship for two classes C and D.

D(X): -C(X). (12)
e rdfs: subPropertyCf: Foreach(M rdfs: subProp-
ertyOf N) statement the following rule pattern isinstan-
tiated, explicating the subset relationship between the rela-

tion N and M.

N(X,Y): —M(X,Y). (12)

e rdf s: domain: A(P rdfs:domain C) statementin-
dicatesthat the domain of aproperty P isof aparticular class
C'. Given an property P(a,b), it follows that the a isanin-
stance of class C'. Thefollowing rules captures the semantics
of rdf s: donmi n

C(X): —P(X,Y). (13)

e rdf s:range: A (P rdfs:range C) statement indi-
catesthat therange of aproperty P isof aparticular class C.
Analogous to r df s: domai n the following rules captures
the semantics of r df s: r ange

C(Y): —P(X,Y). (14)

5.2 OWL Liteequality and inequality

This section provides the trandation for the different means in
OWL to define equalities and inequalities for classes, properties
and individuals.

5.2.1 Equality of classes and properties

Equality of classes and propertiesin OWL can be established by
different means. One possibility is to establish equality by provid-
ingviacyclicr df s: subC assOf andr df s: subPropert yCf
definitions. Thereis not further need to investigate this possibility,
sincethetrandation of ther df s: subCl assOf andr df s: sub-
Propert yOr definitions are already sufficient to reflect the se-
mantics. The other in OWL and OWL Lite to define equality of
classes and properties are the following:

e oW : saned assAs: Foreach(C ow : sanmed assAs
D) thefollowing rule pattern is instantiated:

D(X): -C(X). (15)
C(X): —D(X). (16)
The two rules realize equality by establishing a circular sub-

class definition.

e oW : sanmePropertyAs: For each (M ow : sane-
PropertyAs N) thefollowingrulepatternisinstantiated:

N(X,Y): —M(X,Y). an

M(X,Y): —=N(X,Y). (18)

Analogous to the owl : saneC assAs case, the two rules
realize equality by establishing acircular subProperty defini-
tion.

5.2.2 Digointness of classes

The pairwise digjointness of two classes can be expressed using
theowl : di sj oi nt Wt h constructor. It guaranteesthat there ex-
istsnoindividual that is member of both classes. Thefollowingrule
pattern captures this:

inconsistent(X, X) : —D(X), C(X). (19)

5.2.3 Equality and inequality of individuals

Equivalence of individuals is established via the ow : sane-
I ndi vi dual As primitive. For the purpose of readability we will
use the symbol = to refer to this primitive, which constitutes an
equivalencerelation over individuals, such asdefined in section 4.4.

To be able to handle skolem functions correctly, additional rules
have to be introduced for each skolem function symbal that occurs.
For each skolem function symbol f of arity n, arule as described
in section 4.4 needs to be added.

Equivalent individual s are a so part of the classes and properties.
To handle the extensions correctly the following nodes are required
for a classes and properties following the p-substitutivity axiom.

e Class membership:
C(X):—C(Y),=(X,Y). (20)
e Property membership:
P(X,Z): —P(X,Y),=(Y,2). (22)
P(Y,2): -P(X,Z),= (X,Y). (22)

Theow : di f f er ent | ndi vi dual Fr omprimitiveisusedto
denote that two individuals are not the same, hence we use the
symbol # as a convenient notation. Since OWL may infer that
some individuals may be the same, an may inconsistency arises, if

ow : sanel ndi vi dual As andow : di f f erent | ndi vi dual -

Fr omcan be derived for the same two individuals. Thisis captured
by the following rule:

inconsistent(X,Y) : — # (X,Y),= (X,Y). (23)

5.3 Property Characteristics

OWL Lite allows to state property characteristics. Syntactically
the propertiesthat are subject of those additional characteristicsare
represented as subclasses of owl : Obj ect Properties. The
classowl : Cbj ect Pr operty isinturnasubclassof r df : Pr op-
erty. These statements are part of the metalanguage of OWL
Lite and treated liker df : Pr oper ty viabinary predicatesin the
database and unary predicates to capture the property membership.

5.3.1 Unary Property Characteristics

However, depending on if aproperty P isdefined to be transitive
or symmetric, further rule patterns are instantiated for p, formaliz-
ing the properties of atransitive or symmetric property.

e oW : TransitiveProperty:
P(X,Z): —P(X,Y),P(Y, Z). (24)
e oW : Symmret ri cProperty:
p(X,Y): —P(Y, X). (25)

5.3.2 Binary Property Characteristics

OWL Liteallowsto specify that thevalues of twoowl : Cbj ect -
Pr operti es areinverseto each other, usingthe(P ow : i nv-
ersedd R) primitive. Hencethesemanticsof al (p ow : i nv-
ersed r) statements has to be captured via the instantiation of
the following rule patterns :

R(X,Y): —P(Y, X) (26)

P(X,Y): —R(Y, X) @7

Functional propertiesare propertiesthat are stated to have aunique
value. If aproperty isaow : Functi onal Property, then it
has no more than one value. It may have no values. Another way
of saying thisisthat the property’s minimum cardinality is zero and
itsmaximum cardinality is 1. The consequenceisthat if two values
of p exists they must be identical. This can be represented in Horn
clauses asfollows:

= (X7Y) : —p(A,X),p(A,Y). (28)

Hence, it isentailed that X and Y must be equivalent instances.
If there is a statement, which declares them to be different from
each other, the knowledge base isin an inconsistent state.

A property of type owl : | nver seFunct i onal Property®
isasubclass of owl : Obj ect Property. If aproperty is of this
type, then the inverse of the property is functional - that means the
inverse of the property has at most one value.

This can be represented in Horn clauses by the following rule
pattern:

Hence, it isentailed that X and Y are equal. If thereis a statement,

which declares them to be different from each other, the knowledge
base isinconsistent.

5.4 Representation of predefined OWL classes

Thing. The predefined class Thing can be represented by the fol-
lowing rule:

Thing(X) : —. (30)

Nothing. The predefined class Nothing can be represented by the
following rule:

Nothing(X) : — # (X, X). (32)

Nothing per default has an empty extension. Every user defined
class subsumes Nothing.

The following rule captures that a consistency follows, if anin-
stance somehow shows up in nothing:

inconsistent(X, X) : —Nothing(X). (32

5.5 Classconstructors

Class constructors may be nested, hence the translation must be
carried out in a recursive manner. The are applied in a recursive
manner as described in table 4.1. Whenever a OWL primitive ap-
pears in such a nesting, the right hand side of the trandation is
applied.

This approach is problematic with respect to LP systems, since
we cannot control, where such a substitution happens and horn-
clauses impose certain restrictions. The following paragraphs will

5Thistype of property was previously called unambiguous property
and |STheOnlyOne property.

explore the behaviour of each OWL class constructor with respect
to the limitations of Horn-Clauses and show thereby which con-
structors can be supported.

55.1 ow : hasVal ue

The oW : hasVal ue primitive allows to define a class via a
certain property value. It can be supported as follows. Let v the
value of property P, which constitutes the class C, then the follow-
ing rule pattern can capture this semantics:

C(X) : —P(X,v). (33)

(34)

hasValue does not impose any difficulties wrt. to Horn clauses,
since the substitution P(X,v) which is inserted for any definition
of C(X) may happen both in the head of arule (as it occurs when
subclassOf isthe previously applied translation) and in the body (as
it occurs when equivalence is applied).

5.5.2 Cardinality Constraints

OWL meansto restrict the cardinality of propertieswhen used on
certain classes. Thevaluesfor such cardinalitiesarerestricted to the
vaues0and 1inthecaseof OWL Lite. Theowl : cardinal ity
construct is a convenience constructor for setting both owl : i n-
Car di nal ty andow : maxCar di nal i t y to the same value.

Defining a property to have a ow : maxi numCar di nal ity
of 1 expressesthat aproperty isfunctional. It istherefore transated
to theinstantiation of therule pattern stated for owl : Funct i onal
Property (seerule 28).

A ow : Cardi nal ity vaue of Ofor aproperty p on class C
means that a property may not be instantiated. Hence an inconsis-
tency follows from having any property value on p:

P(X,v): —C(X).

inconsistent(X,Y) : —p(X,Y). (35)

The class therefore also corresponds to the predefined class Noth-
ing, whose extension is per default empty.

Nothing(X) : —C(X). (36)

C(X) : —Nothing(X). 37)

A ow : m ni munmCar di nal ty of 1 statesthat for al domain
values of that property there is at least one range value. Expressing
theowl : mi ni nuntCar di nal ty constraint in predicate logic re-
sultsin the following formula:

vX3Y : P(X,Y) (38)

The formulais using an existential quantifier, which is not directly
expressible using Horn logic. However, using a skolem function
produces the same effect.

p(X, f(X)). (39)

Please note that for each constraint a” fresh” skolem function needs
to be used, since otherwise unintentional equalities could follow.
Hence, this equation may safely occur in both the body and head
of rule (which occurs in case of equivalence), when the rule is ex-
panded out during the recursive translation process.

Unrestricted Cardinality. The unrestricted use of cardinality
constraints can not be supported efficiently in Logic Programming
environments, sinceit involves counting using inequalities. The ba-
sic technique follows from the restricted min- and maxcardinality
cases shown above. To support a minimal cardinality n, we must

create a new skolem functions for the missing values but take care
of all occuring values. To support maxcardinality, we must cre-
ate new equality assignments if the specified boundary has been
broken. this involves to take into consideration all present values.
However, we could not yet prove the validity of our idea, since the
procedure breaks out of the frame given by [3], who uses counting
quantifierswhich are not present in logic programming. Hence, we
do not support unrestricted cardinality for the time being.

5.5.3 Local rangerestrictions
A property on aparticular classmay havealocal rangerestriction
associated with it. There are two kinds of local range restrictions:

e oW : al | Val uesFrom This means that if an individual
instance of the class is related by the property to a second
individual, then the second individual can be inferred to be
an instance of the local range restriction class.

May C bethelocal range restriction on property P for class
D. This can be captured viarules of the following form

C(Y): —P(X,Y),D(X). (40)

e ow : soneVal uesFr om Thismeansthat aparticular class
may have arestriction on aproperty that at least one value for
that property is of a certain type. It can be captured in first-
order logic as follows.

VX3Y : C(Y) A P(X,Y) — D(X) (41)
= VXY : (P(X,Y)AC(Y)V-D(X)) (42)
VXY : (C(Y)V -D(X)) A (P(X,Y)V-D(X)) (43)
VX3IY : (C(Y) — D(X)) A (P(X,Y) — D(X)) (44)

The last formulacan be skolemized again - thisleads to two clauses

(45)

P(X, f(X)) : =D(X). (46)

Please notethat again for every owl : sonmeVal uesFr omanew
skolem function is required.

55.4 Set construction of classes

Conjunction. The conjunction of classes (D = C; M Cy) can
be easily supported easily viathe following rule pattern:

D(X) : —=C1(X), C2(X). 47)
Cl(X) —D(X) (48)
Ca(X) : —D(X). (49)

Disjunction. Disjunction of classesis problematic sincedigunc-
tion digunction in the consequent of the rule, which can not be
provided by a Horn clauses, can occur in the case of equivalence (
D= Cl (] CQ)

For the D O C, U C, direction the following rule pattern is
instantiated:

D(X) : —Cy(X). (50)

D(X) : —Ca(X). (51)

However the other direction no Horn clause can be stated, since
disunction in the head would occur, such as captured by the fol-
lowing FOL formula:

VX 1 C1(X) V Ca(X) — D(X) (52)

Class Complement. OWL features the complementOf primi-
tive, which cannot be implemented in Horn Logics due to the fact,
that there may be no negation in the head, since even the subClas-
sOf substitution for the class construct can not be transformed dur-
ing the recursive trandlation. The inability to support equivalence
follows directly from this situation.

5.5.5 Construction of classes by enumeration

Theow : oneOf primitive can be partialy supported. To state
theclass of theindividualslisted in the argument of theow : oneCF
primitive, for each member a; of the primitive afact is generated:

C(aq). (53)

To support the other direction (which states that every instance
of C isone of thelisted a; the following formulais required:

VX C(X) == (X,a1) V-V = (X, an). (54)

Unfortunately axiom 54 requires a disjunction in the consequent
of the rule, which can not be provided by a Horn clauses.

5.6 Supporting terminological queries

As mentioned in the introduction, DLs support the following set
of queries: (I) whether adescription £ subsumes D, thisisthe case
iff for every interpretation Z, DZ C EZ. (I1) whether a description
D is coherent/satisfiable, this is the case if there is at least one 7
such that DF # (), and (I11)whether descriptions E and D are dis-
joint, this is the case iff for every interpretation Z, D N EZ = 0.
Asthose queries are concerned with every possibleinterpretation Z,
we may simulate those queries by inserting hyptothetical (unique)
inidividuals. Checking if C subsumes D only requires to intro-
duce a new individua i, assert C(i), and see wether D(i) follows.
Checking the equivalence, corresponds to doing this ssimulation in
both directions. The classes are digoint if neither direction fol-
lows. Satisfiability of classesis guaranteed since we cannot gener-
ate any contradictions with the class constructors expressible in the
above frame. The only situation where this could happen, would
be if Nothing is involved in the conjunction of classes. However,
once any instance of Nothing is created the inconsistency predicate
would hold avalue. If we apply the above strategy, and the newly
inserted instance would show up in the extension of theinconsi stent
extension, then aclassis not satisfable.

6. TRANSLATION TO DATABASES

After having established the OWL/LP fragment in the previous
section, we will take a closer 1ook to the fragment of OWL which
can be implemented on top of standard relational databases. L uck-
ily, Logic Programming is also an elegant language for data-oriented
problems, for example it allows to obtain languages equivalent to
known database |anguages by making various syntactic restrictions.
One language that can be obtained by such restrictions is Datalog,
which underlies deductive databases. Compared to logic program-
ming Datal og makes the following restrictions.

1. rangerestriction: al variablesin the head of arule must oc-
curin at least one of the body predicates. Thisguaranteesthat

rules are strongly safe if the underlying body predicates are
safe. A predicate is safe, if it isfinite. The range restriction
mainly guarantees that queries and rules can be computed in
abottom-up manner, asit is done in databases.

2. function symbols with arity > 0 are excluded.
6.1 Effectsof datalog restrictions

Range restriction. With respect to range restrictions, two rules
are effected: (Rule 6) the reflexivity of equivalence and (Rule 30)
the representation of Thing, which isthe top most class. However,
we can find eguivalent variants of these rules by adding an unary
predicate resource(X), which contains all RDF resources and rely-
ing on this predicate for the definition of the above rules.

= (X, X) : —resource(X). (55)

Thing(X) : —resource(X). (56)

Please note, that this requires to change the RDF representation
proposed in section 3 to populate the resource predicate accord-

ingly.

Lack of function symbols. This obviously drops the rule for
f-substitutivity. In theory we could simulate skolemization by gen-
eration of artificial and unique uris. This requires to implement
such afacility, e.g. asastored procedure in the database. However,
this is not a logical characteristic of the Datalog model, hence it
will be very difficult to proof the correctness of that approach wrt.
to the logic. As a consequence, the existential local range restric-
tion (Rules 45 and 45) , minimum cardinalities (Rule 39) are not
supported in our database implementation.

6.2 Trandation torelational databases

Datal og programs can beimplemented on top of relational databases.

To perform thisimplementation all explicit facts of apredicate p are
stored in a dedicated table pe,:. All non-recursive rules are trans-
lated to relational views. Rule bodies are translated to appropriate
SQL queries (usually operating on other views). To obtain all ex-
plicit and implicit information, a view is defined to represent each
predicate p. The query of the view integrates the explicit infor-
mation, found in p..+ With the queries that represent the bodies of
those rules, where p isthe head. The interested reader may refer to
[17] for an in-depth description, algorithm and proof. Intuitively,
this result follows from the following substitutions:

e Each Datalog-rule can be simulated using the select-from-
where construct of SQL.

e Multiple rules defining the same predicate can be simulated
using union.

e Negation in rule bodies can be simulated using not in

To compute the answer for user queries the translated views are
used. This realizes a form of Bottom up processing, since the
queries involved in view definitions are performed on the exten-
sional data and intermediate results are propagated up to a final
query, which is the user query. Notably, many irrelevant facts are
computed in the intermediate steps, however more efficient proce-
dures based on sideways information passing have been developed
in the deductive database literature.

However, the above mentioned strategy is not possible for recur-
sively defined rules. Here additional processing is required.

6.3 Handlingrecursion

Modern relational database systems, which support the SQL:99
standard, can process some limited form of recursion, namely lin-
ear recursion with a path length one. Hence, the predicate used as
the rule head may occur only once in the rule body. Cycles other
than such linear self-references can also not be implemented.

Usually, binary recursive rules such as transitivity can be rewrit-
ten into alinear form. E.g. atransitive predicate like Transitive-
Property (Rule 24) can be rewritten into

P(X,Y): —Pgat(X,Y). (57)

P(X,Z): —Ppat(X,Y), P(Y, Z). (58)

The equality issue. However the rewriting can not be done in
our case due to the p-subgtitutivity axiom of equivalence, where
all predicates are aready linearly associated with themselves. As
mentioned above multiple rules with the same head are simulated
by union, hence only one possibility for linear recursion exists and
is aways taken by the p-substitutivity axiom of equivalence.

The usual strategy to compute the remaining forms of recursive
rulesin relational databasesisin-memory processing using someit-
erative strategy, e.g. the magic template procedure [13]. However,
the constitution of samelndividualAs in OWL leads to the neces-
sity to always use this strategy for the complete knowledge base.
Apparently, this somehow nullifies the use of database query lan-
guages as a host language altogether and makes efficient processing
of large volumes of instance data questionable.

We therefore decided to drop samelndividualAs in our database
implementation. Asaconsequence all OWL constructs, where new
instance equality is deduced such as Functional- and InverseFunc-
tional Properties are not supported. Additionally primitives which
are logicaly justified only by the existance of instance equality,
such as differentlndividual From, are not supported.

Figure5: Cyclic Reference Removal

Indirect Recursion. The remaining cases of non-linear recur-
sion that cannot be rewritten into the SQL:99 constructs are mainly
represented by the possibility of having cyclic class and property
hierarchies. However we can trand ate this case into the database by
exploiting the observation that this form of recursion decomposes
into unions, since no join processing of intermediate results such as
involved in computing the transitive closure in TransitiveProperty

are necessary. Thisisimmediately clear for classes, since they are
monadic predicates. A closer look at all axiomswhere binary pred-
icates (properties) are in the head reveals the same. Hence, these
cyclic references can be implemented via an algorithm that detects
equivalence classes (each constituted by a cycle) in graphs. All
incoming edges to an equivalence class must be duplicated to all
members of the equivalence class, such as done in Figure 5. This
may done by using a new intermediate predicate to collect the in-
coming edges and deriving the members of the equivalence class
from this intermediate predicate. Afterwards all rules that consti-
tute the cyclic references within the equivalence class may safely be
removed. The reader may note that this can also be performed with
appropriate adaptions on the cyclic references imposed by inverse
properties.

5 ——

Figure 6: Bubo Online web service

7. IMPLEMENTATION

We have implemented the discussed OWL subsets on top of rela-
tional databases and on top of XSB. The implementation is named
after the Latin name of the biological genus of eagle owls: bubo.
Bubo is a prototypical implementation of the discussed OWL sub-
sets. It is freely available at http://km.aifb.uni-karlsruhe.de/owl/.
We aso host an online service (cf. Figure 6) that allows to reason
over al online OWL ontologies that meet the restrictions discussed
in section 4.

Bubo consists of four central components (cf. Figure 7) which
are described inthe following. Two alternativeimplementationsare
provided, one utilizing X SB [15] as a prolog engine, the other DB2
as a SQL:99 compliant database. In this way, implementations of
the OWL/LP fragment and the OWL/Datalog fragment are offered.

The Rule Compiler generates the appropriate XSB logic pro-
gram and the respective database view definitions from a given
source ontology. All ground facts are stored in separate predicate
to allow their combination with the ground facts retrieved from the
integrated database content.

The View Definitions are specified by the user to map given

- -_-'.-:_:_ OWL Definition @

XSB XSB
Rule Compiler Query API
i Y W

'

'

Rule base @
XSB
Data Wi
oo TR0 [
Integrated
View-enriched DB Data/Rule
ﬁ Base

View-Definitions @

Source Database

m Alternative
m Implementations

)

=

Figure 7: Bubo Architecture

source data to extensions of the ontology. At the moment, two
types of views are allowed, binary views to populate properties (cf.
Section 3) and unary viewsto populate classes. The users must fol-
low adefined naming pattern to allow the Data Weaver to recognize
the defined views.

The Data Weaver merges the instance data defined in the ontol-
ogy with the data integrated from relational source databases. For
XSB thisis done viathe built-in tuple interface that can be used to
retrieve data from databases with the XSB-ODBC module. To do
that, the appropriate connections to the source databases are opened
(by appending the required statements to the translated rule base).
All views defined by the user in the view definition component are
bound as X SB predicates using the ODBC import statement:

?- odbc_i nport(’ PropertyView (' DOVAIN ,
"RANGE'), PropertyView).

?- odbc_import ('’ O assView (' | NSTANCE'),
"PropertyView).

This dataisthen combined with the instance data provided in the
ontology definition via simple additional rules:

P(X,Y) :- P_Onto(X Y).
P(X,Y) :- P_Db(XY).
C(X) :- COnto(X).
AX) - CDu(X).
The DB2 implementation conceptually follows this approach.

However, due to the implementation on the native database, we
do not need to import the defined views. The integration of data

defined in the ontology and found in the database is done through
another view definition:

CREATE VIEWP(X,Y) AS

(

(SELECT * FROM P_Ont 0)
UNI ON ALL

(SELECT * FROM P_DB)

)

The Query API provides predefined operations for the standard
DL queries, lists available properties and classes and allows read
access to data through the query languages offered by XSB and
DB2 SQL respectively. All queries operate on the integrated data-
and rule-base that is generated by the Data Weaver.

8. RELATED WORK

An axiomatization of DAML+OIL, the precursor of OWL, was
given by McGuinness and Fikes [5]. There are a number of conse-
quences of the axiomatization that are not obvious from the lan-
guage, which is given in KIF and therefore not directly imple-
mentable in LP-based systems. It can rather be interpreted by the-
orem proofers. The axiomatization has not been updated to meet
changes made to OWL, for example the definition of Symmet-
ricProperty.

Three systemstry to implement OWL using aL P-based approach:
The Euler Proof Mechanism [14] by Jos De Roo of Agfaand Tim
Berners-Lee's Closed World Machine (CWM) [2] correspond very
closely and use the same syntactic format for rules. However both
do not consider data integration. They try to axiomatize every-
thing, whereas we try to rely on the features of logic itself, such
asimplication to operationalize the transitivity of subclassof. Their
axiomatization is not proven to be correct or complete, e.g. they do
not capture the substituivity of samelndividual As and capture only
one direction of hasValue. Thereis no formaly proven characteri-
zation of the inference algorithms employed by Euler and CWM.
So it isunclear what they are actually doing. On the opposite Horn
logic has been well investigated and many optimization methods
for evaluation exist in the literature. The DAML XSB compiler
[18] derives its axiomatization from [5] and uses XSB to imple-
ment DAML+OIL reasoning. Obviously, some KIF rules can not
be captured, such as Ax 105 and Ax 128 of [5] The current version
is dightly outdated and incomplete, e.g. with respect to equiva-
lence.

Our approach is very close to the work of Grosof and Horrocks,
which produced a document called Description Rules in context of
the DAML programme. However, the document is still in draft ver-
sion and presents preliminary findings. They consider an extended
logic programming language, with a built-in equivalence predicate
and do not discuss how this correlates to existing implementations,
which do not sport that feature. Their approach is less complete,
but is conceptually similar, since they also follow the trandation
approach proposed by [3]. However, their trandlation is less com-
plete, eg. eg. cardinaity axioms are not suggested. Also, they
do not discuss how the approach may be used in conjunction with
avail able database technol ogy.

Last but not least several papers presented a trandlation of de-
scription logics to first-order logic, such as [3] and [16]. Both
approaches translate a description logics into FOL, which is not
directly implementable in logic-programming environments.

9. CONCLUSION

We have presented the OWL subset which can safely and con-
sistently be represented in logic programming environments. We

have additionally shown, how this translation can be used to derive
atranglation for relational databases by following the restrictions of
the Datalog paradigm with respect to the full Logic Programming
paradigm.

Our future work mainly resolves around a more detailed ook at
cardinality constraints > 1 and coming up with an alternative se-
mantics for the aspects of OWL, which intuitively state constraints,
such as cardinality or functionality of properties. We expect that
many people coming from a database and object-oriented program-
ming community will find those semantics more natural. We are
currently working on trying to find the correspondences between
such a constraint semantics and the DL semantics that entails ad-
ditional equalities to meet specified constraints. Another future
topic will be the eval uation and adaption of optimization techniques
known for processing logic programsfor this special subset of logic
programming which centers around unary and binary predicates.
We expect that a rule extension in the Semantic Web will largely
stay in this framework, hence efficient optimizations for this spe-
cial type of horn clauses may be achievable.

We also want to investigate how logic programming systems
could interact more closely with DL reasonersrealizing hybrid rea-
soning schemes by performing efficient T-Box reasoning on the DL
reasoner side and efficient A-Box reasoning on the LP side. An-
other important topic not investigated yet will be the support for
XML datatypes such as recently drafted by the W3C for both RDF
and OWL. Obviously, wewill again try to reuse as much machinery
as possible from the underlying implementations.

Acknowledgements. We thank 1an Horrocks, Boris Motik, and
Steffen Staab for their feedback on previous versions of the paper.

10. REFERENCES

[1] Rakesh Agrawal, Amit Somani, and Yirong Xu. Storage and
querying of e-commerce data. In The VLDB Journal, pages
149-158, 2001.

[2] Tim Berners-Lee. Cwm - close world machine. Internet:
http://www.w3.0rg/2000/10/swap/doc/cwm.html, 2002.

[3] Alexander Borgida. On the relative expressiveness of
description logics and predicate logics. Artificial
Intelligence, 82(1-2):353-367, 1996.

[4] Weidong Chen, Michael Kifer, and David Scott Warren.
HILOG: A foundation for higher-order logic programming.
Journal of Logic Programming, 15(3):187—230, 1993.

[5] R. Fikesand D. McGuiness. An axiomatic semantics for rdf,
rdf schema and daml+oil. Technical Report KSL-01-01,
KSL, Stanford University, 2001.

[6] Volker Haardlev and Ralf Maller. Description of the RACER
system and its applications. In DL2001 Workshop on
Description Logics, Stanford, CA, 2001.

[7] Steffen Hoelldobler. Foundations of Equational Logic
Programming, volume 353 of LNAI. Springer, 1987.

[8] lan Horrocks, Ulrike Sattler, and Stephan Tobies. Practical
reasoning for expressive description logics. In Harald
Ganzinger, David McAllester, and Andrei Voronkov, editors,
Proceedings of the 6th International Conference on Logic for
Programming and Automated Reasoning (LPAR' 99), number
1705, pages 161-180. Springer-Verlag, 1999.

[9] Michad Kifer, Georg Lausen, and James Wu. Logical
foundations of object-oriented and frame-based languages.
Technical Report TR-90-003, 1, 1990.

[10] O. Lassilaand R. Swick. Resource description framework
(RDF) model and syntax specification. Internet:

http://www.w3.org/ TR/REC-rdf-syntax/, 1999.

[11] D. McGuinness and F. van Harmelen. Feature synopsis for
owl lite and owl. W3C Working Draft 29 July 2002, Internet:
http://www.w3.org/ TR/owl-features/, 1999.

[12] Mike Dean, Dan Connolly, Frank van Harmelen, James
Hendler, lan Horrocks, Deborah L. McGuinness, Peter .
Patel-Schneider, and Lynn Andrea Stein. Owl web ontology
language 1.0 reference. Internet:
http://www.w3.org/ TR/owl-ref/.

[13] R. RAMAKRISHNAN. Magic templates: A spellbinding
approach to logic programs. J. Logic Programming,
11:189-216, 1991.

[14] Jos De Roo. Euler proof mechanism. Internet:
http://www.agfa.com/w3c/euler/, 2002.

[15] K. Sagonas, T. Swift, and D. S. Warren. Xsb as an efficient
deductive database engine. In R. T. Snodgrass and
M. Winglett, editors, Proc. of the 1994 ACM SSGMOD Int.
Conf. on Management of Data (SGMOD’ 94), pages
442453, 1994.

[16] J. Schmolze and D. Israel. KL-ONE: semantics and
classification. Technical Report 5421, BBN Laboratories,
1983.

[17] Jeffrey D. Ullman. Principles of Database and
Knowledge-base Systems, volume 1. Computer Science
Press, 1988.

[18] Youyong Zou. Daml xsb interpretation. Version 0.3, Internet:
http://www.cs.umbc.edu/ yzoul/daml/damlixsh.Pixt, January
2001.

APPENDIX

A. OWL/LP REPRESENTATION OF THE
GENEALOGY ONTOLOGY

Thing(X) :- .

=(X X)) -

Animal (X) :- Aninal (Y),=(XY)
Ani mal (X) :- Person(X).

Animal (X) :- Ml e(X).

Animal (X) :- Fenal e(X).
Person(X) :- Person(Y),=(XY)
Person(X) :- Man(X).

Person(X) :- Wnman(X).
Person(X) :- hasParent (Y, X), Person(Y).
Male(X) :- Male(Y),=(XY).

Mal e(X) :- Man(X).

Femal e(X) :- Fenale(Y), =(XY).
Femal e(X) :- Wonman(X).

Woman(X) :- Wman(Y), =(X V).

Man(X) - Man(Y), =(X V).

inconsistent (X X) :- Mle(X), Femal e(X).
inconsistent(X Z) :- inconsistent(X YY), =(Y,2).
inconsistent (X, Y) :- =(XY), !I=(XY).
hasParent (X, Y) :- childO (Y, X).
hasParent (X,Y) :- hasMther(XY).
hasParent (X,Y) :- hasFather(XY).
hasParent (X, Z) :- hasParent(X YY), =(Y,2).
childO (X, Y) :- hasParent (Y, X).
childO (X 2) :- childO(XY), =(Y,2).
hasMt her (X, Z) :- hasMdther(X YY), =(Y,2).
hasFat her (X, Z) :- hasFather(X YY), =(Y,2).

B. OWL/DB REPRESENTATION OF THE
GENEALOGY ONTOLOGY

CREATE VI EW Thi ng(X) AS (SELECT * FROM Resource(X))

CREATE VI EW Man(X) AS (SELECT * FROM Man_Ext)

CREATE VI EW Wonan(X) AS (SELECT * FROM Wnan_Ext)

CREATE VI EW hasFat her (X, Y) AS (SELECT * FROM hasFat her _Ext)

CREATE VI EW hasMt her (X, Y) AS (SELECT * FROM hasMbt her Ext)
CREATE VI EW hasParent (X, Y) AS
((SELECT * FROM hasPar ent _Ext)
UNI ON ALL
(SELECT * FROM hasFat her)
UNI ON ALL
(SELECT * FROM hasMot her)
UNI ON ALL
(SELECT childOfF_Ext.Y as X, childO_Ext.X as Y
FROM chi | dOF _Ext))
CREATE VI EW chi | dOF (X, Y) AS
((SELECT * FROM chi | dOf _Ext)
UNI ON ALL
(SELECT hasFather.Y as X, hasFather_Ext.X as Y
FROM hasFat her)
UNI ON ALL
(SELECT hasMther.Y as X, hasMther.X as Y
FROM hasMot her)
UNI ON ALL
(SELECT hasParent _Ext.Y as X hasParent_Ext.X as Y
FROM hasPar ent _Ext))
CREATE RECURSI VE VI EW Person(X) AS
(((SELECT * FROM Person_Ext)
UNI ON ALL
(SELECT * FROM Man)
UNI ON ALL
(SELECT * FROM Wonan))
UNI ON ALL
(SELECT hasParent.Y as X
FROM hasParent, Person
WHERE hasParent. X = Person. X))
CREATE VI EW Mal e(X) AS (
(SELECT * FROM Mal e_Ext) UNION ALL (SELECT * FROM Man))
CREATE VI EW Femal e(X) AS (
(SELECT * FROM Mal e Ext) UNION ALL (SELECT * FROM Man))
CREATE VI EW Ani mal (X) AS
((SELECT * FROM Ani mal _Ext) UNION ALL (SELECT * FROM Mal e)
UNI ON ALL
(SELECT * FROM Fenml e) UNION ALL (SELECT * FROM Person))

