Description Logic Programs: Overview for DAML and WebOnt

Adapted from Presentation for DAML PI Meeting, made Oct. 17, 2002, Portland, OR, USA This version is from Oct. 21, 2002.

Benjamin Grosof

MIT Sloan School of Management bgrosof@mit.edu <u>http://www.mit.edu/~bgrosof/</u>

> Joint work with Ian Horrocks University of Manchester

horrocks@cs.man.ac.uk http://www.cs.man.ac.uk/~horrocks

10/27/2002

by Benjamin Grosof copyrights reserved

Motivation from "DAML Rules" effort

- Goal: the hybridization of DAML+OIL/OWL with Logic Program rules
 - original aim: extend expressiveness of DAML KR beyond DAML+OIL/OWL.
 - for defining ontologies, and for rules plus ontologies
 - current thrust focuses on *Description Logic Programs* as KR

Motivation from Semantic Web "Stack"

Motivation from DAML-Services

- Rule-based Semantic Web Services (RSWS)
- Application Scenarios
- For details, see the full Rules Report presentation by Benjamin Grosof from the DAML PI Meeting.

Description Logic Programs (DLP)

- Status: [Grosof & Horrocks 10/02] working paper, Joint Committee discussions, including early use cases.
- Goal: understand relationship between DL and LP/HornFOL as KR's
 - Insight: expressive intersection is also

a key to expressive combination/union

1st step: expressive intersection of DL and Logic Programs

 = "Description Logic Programs"
 (or "Description Rules")

Venn Diagram: Expressive Overlaps among KR's

LP as a superset of DLP

• "Full" LP, including with non-monotonicity and procedural attachments, can thus be viewed as including an "ontology sub-language", namely the DLP subset of DL.

Candidate: First Order Logic

- FOL has practical and expressive drawbacks for <u>union</u> of DL and Rules:
 - Undecidable/Intractable
 - Lacks non-monotonicity and procedural attachments
 - Unfamiliar to mainstream software engineers
- Variant of DLP: "Horn Description Logic (HDL)"
 - Intersection of Horn Logic and Description Logic
 - Subset of FOL
- (general concept of "Description Rules": covers DLP or HDL)

Overview of DLP Features

- Essentially, DLP captures RDFS subset of DL -- plus a bit more.
- RDFS subset of DL permits the following statements:
 - Class C is <u>Subclass</u> of class D.
 - <u>Domain</u> of property P is class C.
 - <u>Range</u> restriction on property P is class D.
 - Property P is <u>Subproperty</u> of property Q.
 - a is an instance of class C.
 - (a,b) is an <u>instance of property</u> P.
- DLP also captures:
 - Using the <u>Intersection</u> connective (conjunction) in class descriptions
 - Stating that a property P is <u>Transitive</u>.
 - Stating that a property P is <u>Symmetric</u>.
- DLP can *partially* capture: most other DL features.
- Relevant technical issues in LP:
 - treatment of equality, e.g., uniqueness of names.

Examples of DL beyond DLP

- DLP is a *strict* subset of DL.
- Examples of DL that is not (completely) representable in DLP:
 - State a subclass of a complex class expression which is a disjunction. E.g.,
 - (Human \cap Adult) \subseteq (Man \cup Woman)
 - State a subclass of a complex class expression which is an existential. E.g.,
 - Radio $\subseteq \exists$ hasPart.Tuner
- Why not? Because: LP/Horn, and thus DLP, cannot represent a disjunction or existential in the head.

Examples of LP beyond DLP

- DLP is a *strict* subset of Horn LP.
- Examples of Horn LP that are not (completely) representable in DLP:
 - A rule involving multiple variables. E.g.,
 - PotentialLoveInterestBetween(?X,?Y)

 $\leftarrow Man(?X) \land Woman(?Y).$

- Chaining (besides simple transitivity) to derive values of Properties. E.g.,
 - InvolvedIn(?Company, ?Industry)

← Subsidiary(?Company, ?Unit)

 \land AreaOf(?Unit, ?Industry).

- Why not? Essentially because: Decidability of DLs crucially dependent on tree model property.
 - Intuition: DL's not used to represent "more than one free variable at a time".
 by Benjamin Grosof copyrights reserved

Benefits: What DLP Enables, in Principle

- LP rules "on top of" DL ontologies.
- Translation of LP rules to/from DL ontologies.
- Use of efficient LP rule/DBMS engines for DL fragment.
- Development of ontologies in LP.
- Development of rules in DL.
- Translation of LP conclusions to DL.
- Translation of DL conclusions to LP.

Related Work to DLP

- CARIN [Halevy & Rousset 1998] on extending DL with some aspects of LP. Focus is on querying DL style KBs.
- [Antoniou 2002] on Defeasible Logic rules + Description Logic (variant) ontologies.