

Semantic Enabling & Exploitation (SEE) for Assured, Improvisational Workflows

Preliminary Ideas

DAML PI Meeting (18 Oct. 2003)

Brian Kettler, Ph.D. ISX Corporation <u>bkettler@isx.com</u>

Agenda

- SEE Seedling Goals
- Operational Motivation problem and examples
- Technology Investment Model
- Applicable Technologies
- Help Wanted
- A couple of caveats:
 - ideas are still evolving
 - these are not the final program brief slides
 - words on the slides are my spin (e.g., not necessarily DARPA's or CECOM's)

SEE Seedling Work

- U.Maryland & Dartmouth work (Prof. Jim Hendler & Prof. George Cybenko)
 - technical studies on semantic interoperability
- ISX & U.Maryland (Prof. Jim Hendler & MINDSWAP lab) seedling (4Q FY03 – present)
 - work with DARPA/IXO (Dr. Mark Greaves and Dr. Robert Tenney) to refine operational and technical concepts for a potential new DARPA program

Goal is to articulate an operational and technical vision and "business case" for a new focus on semantic enabling and exploitation for improved interoperability.

The Problem

- In today's world of new missions and partners, <u>improvisational</u> workflows in the field are needed to help a commander meet new information requirements
 - too expensive to design for all possible requirements, even if they were known
- Current (rapid) interoperability efforts are ad hoc, <u>error prone</u> and resource-intensive
 - no time to do extensive design work, semantics are hidden (especially in legacy systems), requires smart programmers to uncover hidden semantics, programming resources limited in the field, etc.
- Interoperability errors have <u>serious operational impact</u>
- This is only going to get worse: increasing operational innovation and tempo require interoperability on the fly in the field

Need: Assured, Improvisational Workflows via Semantic Interoperability.

The Interoperability/Integration Problem

Some examples - AFSAB study on Database Migration (Interoperability) (2001)

- AF/IL (SSG, Gunter AFB)
 - 120 systems, 2000 interfaces (30-40% of all code)
 - Data standardization (3 ILM systems) cost \$40M, 4 years
- 7th AF (Osan, Korea)
 - TBMCS support to Integrated Tasking Order (ITO) Preparation
 - Facility target datasets failed to load (over 8,800 discrepancies)
 - ITO delivered later than required
 - Development of local work-arounds Separate "off-line" database for aimpoints
- Network Centric Warfare (NCW) is the military's driving enabler for future operations (with information superiority, decision superiority, etc.)
 - networking the force (warfighters, weapons and C2/IT systems) for improved situation awareness, unified understanding of and action on commander's intent, etc.
 - includes Army's Future Combat System (FCS), USAF JBI, etc.
 - leverage information technology advances across physical, knowledge, and cognitive domains
 - enabled by connectivity (via Global Information Grid), "infostructures", and services
 - key enablers (from NCW DOD Report to Congress, July 2001) include:
 - connectivity, technical interoperability, sense making (semantic interoperability), integrated processes, integrated production, network-ready battlespace enablers

Information Exploitation Office

© ISX Corporation, 2003.

The Interoperability/Integration Problem (2)

Problem not limited to military

 B2B – "B2B today is in crisis", Dr. Marty Tennenbaum, CommerceNet (Intelink 2003)

- billions invested, little ROI due to conceptual and structural problems
- takes \$100K and 100 days to enable a new B2B connection between 2 enterprises
- requires new approach = "Business Service Networks": services from multiple companies within an industry loosely coupled at the *process* (vs. interface) level

 Imperfect interoperability costs \$1B per year (conservative estimate) for US automotive supply chain (NIST Study, 2001)

- mostly in repairing or re-entering data files not usable by downstream apps
- Integration is expensive
 - Glue code costs 3x more per line than non-glue code (NSF CeBASE study of COTS-Based Systems)

© ISX Corporation, 2003.

(Courtesy of Bill Jeffrey, ATO)

s:\ado\graphics\briefings\bond\may\gansler052698 7

The Information Integration Problem

"Swivel chair" integration – slow, costly, and error prone.

Operational Example from US Army Communications-Electronics Command (CECOM)

The Problem:

- For Operation Iraqi Freedom (OIF), information requirements of Coalition Force Land Component Commander (CFLCC) not satisfied by current systems / processes.
 - 12 critical workflows identified to share critical information across force components (e.g., USA and USMC), echelons (e.g., Corps and Division) functional areas (e.g., Ops and Intel)
 - involving 36 C2 sytems (Army with some USMC, USAF) 200 interfaces among those systems
- Solution
 - 6 month "crash" integration effort by CTSF (Ft. Hood) & CECOM
 - required extensive coding, testing, and repair
- System replication at various echelons
 - Custom connections between some systems
 - Swivel chair integration between some systems
- Impact:
 - Resources consumed (programmers, hardware, training, etc.)
 - Implementation of these workflows may have contributed to the delayed start of OIF
- C2 interoperability issues hampered flexible use of forces © ISX Corporation, 2003. UNCLASSIFIED

Sample Thread

Blue Situation Awareness (SA) information sharing

- across echelons: e.g., between Corps and Division level
 - share blue position information
 - between GCCS-A and MCS-L systems
- between Operations and Intelligence
 - between GCCS-A/C2PC and ASAS systems
 - integrate display of Red and Blue situation information to find threats to Blue

Challenges

- location of systems some replication of hardware/software required (plus training)
- Iimited configuration possible (e.g., GCCS output message modes)
- interoperability incompatibilities between original workflows
 - e.g., reference data incompatibilities for Unit ID Codes (UICs)
- documentation not always available and consistent
 - e.g., System of Systems manual has discrepancies in ???% of entries
- programmers required
- human still in the loop as "translator" (swivel chair interoperability)

UNCLASSIFIED

GCCS Interface Architecture

CTSF/OIF Blue SA Thread: Architectures Original Architecture Improvised Architecture

Future Concept of Operations: Assured, Improvisational Interoperability

- Support <u>improvisational workflows</u> through rapid generation of a custom system of systems by <u>non-programmers</u>
 - new workflow identified to support a commander's information/C2 need and specified by a non-programmer
 - automated assembly of (wrapped) component systems (and services)
 - ad-hoc interoperability (at the process/operational level)
 - may be custom "one of" system of systems
 - <u>assured interoperability</u>
 - analysis (V&V, etc.) of system of systems for correctness, completeness, quality of service, etc. (prior to and during execution)
- Move from data-level interoperability to <u>process-level</u> interoperabiliy
 - requires semantics
- DoD is moving towards <u>services-oriented architecture</u>, along with the commercial world
 - How can this be exploited to revolutionize military command and control?

© ISX Corporation, 2003.

Assured Interoperability: Risk and Sources of Error

- Differing Syntax may cause parse failure
- Differing Terminology
 - different units yards vs. feet
 - different names for the same class (e.g. Employee vs. Worker)
 - different names for same entity (including abbreviations)
 - e,g, Mass. vs. Massachusetts vs. The Bay State
 - e.g., plane observed at Airfield X vs. dark shadow in satellite imagery photo 103
- Differing Concepts/Ontologies
 - differing coordinate schemes
 - origin point
 - dimensionality
 - different concepts with the same name
 - may differ in granularity e.g., 1776 vs. 18th Century; Paris vs. France vs. Europe; engine vs. entire car
 - may be related by subsumption
 - different abstraction hierarchies (class hierarchies)

Differing Values for the Same Attribute (Data Discrepancies)

- different values
- same value but at differing precision/resolution
- Different Reference Data
 - different sources (check information pedigree)
 - different accuracy/precision
- Different Context
 - different mission objectives
 - different assumptions or constraints (ROEs, etc.)
 - different views of the battlespace
- Different Workflows
 - different target workflow
 - different original workflow
- Different Timing
 - different synchronization, latencies
 - different updates
 - different resource utilization (can lead to deadlocks, etc.)

Example: 2 route planners:

<u>different inputs</u> – origin and destination: coordinate schemes
<u>different maps</u> – from different GIS sources, of different scales, different versions of same map
<u>different outputs</u> – waypoints vs. line segments; coordinate schemes; scale
<u>different models and methodologies</u> – route planning algorithms, doctrine/ROEs/threat models/vehicle capability models (can't cross X, go near Y), etc.

© ISX Corporation, 2003.

Some Requirements

Explicit semantic representations

- for models of system interfaces, processes, workflows, etc.
- wrapping of systems, components, and services (by programmers, with automation)

User interfaces

- GUIs for non-programmers to sketch new workflows
- GUIs to display results of new workflows
- Automated assembly of systems, components, and services
 - discovery
 - composition using adaptive, semantic connectors
- Automated analysis of composed system of systems
 - compose models of components
 - analyze composed model for correctness, completeness, QOS

Making the Case

Some Questions

- What is the operational need?
- Why DARPA? Why Now (versus yesterday, tomorrow)?
 - why this is distinct from yet builds on previous DARPA work (I3, HPKB, RKF, ARPI/Planning, CoABS, DAML, etc.)
- If DARPA invests \$n million in this area, what is the argument it will (1) be successful and (2) produce a good ROI

■ Make a <u>quantitative</u> case where possible – some factors:

- processes (old and new) being automated
 - expected level of automation (via technologies x, y, z...)
 - projected benefits over the next several years
- expected operational impact
 - better, cheaper, faster, etc. specify metrics to evaluate
- e.g., incremental cost of adding semantics, etc. on top of DOD SOA(s)
- Use operational examples to ground the model
 - challenge is to get the data
 - argue from these "base cases" by induction

Influence Diagram Model

Why influence diagrams?

- Captures relationships ("influences") quantitatively
- Graphical representation (versus buried in a spreadsheet)
- Allows easy "what if" and sensitivity analysis
- Easy to tweak e.g., change values/distributions of input parameters, functions, etc.
- Used commercial influence diagram tool: Analytica by Lumina Decision Systems
 - can generate data for graphing via Excel

Model Rationale

- Model the integration of two systems
- Key metrics
 - time
 - does <u>not</u> include time to build connectors
 - does include selection, configuration, and application of connectors
 - does include time to model systems
 - correctness
 - error rates from various steps
 - does not yet model cascading errors
 - completeness
 - still fuzzy
 - includes schema elements mapping "recall"
 - could also include % of data translated by semantic connectors at runtime
 - exception handling ability
 - majority of workflow definition effort
 - analogy to automated test case generation
 - QoS attributes not yet modeled
 - Comparison non-SEE, SEE Baseline (current tools), SEE Level I and II
 - SEE Baseline might also include WSDL-ified services (e.g., DISA NCES)
- Inputs
 - Problem attributes size and complexity of integration (# of schema elements, original workflows), "semantic distance" between the 2 systems
 - Skills modeling, etc. (programmer and domain skills)
 - Technology contributions (done as % improvement over baseline)
- Constants, etc. validated from CECOM data and from literature survey of relevant areas: e.g., COCOMO II for software engineering metrics (non-SEE case)

© ISX Corporation, 2003

CECOM Example – Thread 3

Timeline

*Software developed by one senior and one junior programmers

- **Software delivery occurs by ftp download
- ***Test results documented at the end of each day, so a draft report was available at the end of testing

SEE Influence Diagram

Modeling Detail

Thread 3 Results

\Lambda Analytica® Trial	
File Edit Object Definition Result Diagram Window <u>H</u> elp	
A Diagram - SEE Model	
Model Input SEE of Time	
Modelin A Diagram - See Simple Non-SE Incompleteness,	
Skill Schema Size (# of schema elements) 20	
Process Complexity (systems in workflow-2) 4 Analysis Analysis	
Schema S SEE Time (Hours) : 74.95 mid Technolgy Semantic	
Non-SEE Time (Hours) : 341.8 mid nprovement	
SEE Relative Correctness (%) : -102.10% mid	
Process SEE Relative Completeness (%) : -62.43% mid Mapping	
Automated Modeling Technology Improvement (% improvement) 0	
Interoperability Analysis Technology Improvement (% improvement) 0	
Distanc Semantic Mapping Technology Improvement (% improvement) 0 Workflow	
Workflow Composition Technology Improvement (% improvement) 0 Composition Technology	
Improvement	
SEE Model	
SEE V.	
Analysis	
Testing and	
Debugging Totals Inputs Interview	
Time Rationale	
example along with	
Software engineering Engineering / Error Rationale:	
a Interature were used to () I Transister P / / / Contraction	

Thread 3 with Tech Improvement

Model Results: Correctness vs. Time

Correctness and Time with Default Parameters

SEE Versions II and III (Baseline + 50% & 80% on all 4 technology area) reduces time and improves correctness (and variability).

Assumptions: CECOM Example schema/workflow size. Independent Variables Time, Correctness

© ISX Corporation, 2003.

Model Results: Modeling Skill vs. Correctness

Modeling Skill vs. Correctness

SEE Versions II and III (Baseline + 50% & 80% on all 4 technology area) reduces errors (across all skill levels) and the impact of skill in general.

Technology Survey Approach (1)

- Determine key technologies (decompose the "green boxes")
 - current state-of-the-art
 - commercial world, research community
 - projected capabilities over next several years (preferably quantitative)
 - commercial world, research community
 - expected contributions to operational goals (metrics)
 - literature survey and discussions with leaders in field
 - areas: workflow systems, interoperability, semantic reasoning/web, software agents, software systems analysis, interoperability infrastructures, etc.

Does SEE require

- (1) breakthrough(s) in one or more key technologies
- and/or, (2) unique "recipe" to combine one or more key technologies?

Why DARPA?

- Does military have unique needs that commercial is not addressing (and won't be for next several years)?
- Does technology require a significant breakthrough on the research front?

Technology Survey Approach (2)

Work should mine previous/current/future DOD investments

- e.g., DARPA I3, HPKB/RKF, CoABS, DAML, etc.
- DISA NCES, USAF Joint Battlespace Infosphere

Work should complement standards processes

- improvisational workflows require rapid interoperability
 - dynamic exchange of content, negotiation of protocols, etc.

 can inform standards processes: e.g., standards cycle is a slower moving "outer loop" (avoid one size fits all, etc.)

Some Key Technical Challenges

Modeling systems, processes, and workflows

- representations and formalisms that go beyond interfaces
- semantic grounding (vs. WSDL)
- recovering models from legacy systems
- Connecting systems
 - types of connectors and applicability
 - representation of context
 - automated adaptation of connectors based on context/environment
- Analyzing interoperability
 - composing models of systems and reconciling diverse semantics
 - reconciling diverse semantics
 - using models to predict correctness, QOS, etc.
- Usable user interfaces for
 - specify new information requirements and sketch new workflows
 - understand risks
 - model new systems

Applicable Technologies – Modeling of Systems' Interfaces, Schemas, Workflows

- Support a user (programmer or domain expert) in creating <u>machine-understandable</u> models for systems' interfaces, schemas/concepts, and workflows)
 - semantic representations (e.g., ontologies/OWL)
 - web services (e.g., XML-based WSDL, XPDL, BPEL4WS)
 - semantic web services (e.g., DAML-S, OWL-S)
 - other process representations e.g., PSL, Petri Nets, Process Algebras, CSP, CCP, etc.
 - automated modeling tools to generate models for legacy systems/services
 - automated ontology generation
 - machine learning of schemas
 - model validation

Applicable Technologies – Workflow Integration

- Support a user (nonprogrammer) in assembling a system of systems for an improvisational workflow
 - Discovery
 - e.g., directories (UDDI, etc.), matchmakers
 - Composition of systems/services
 - semi-automated e.g., U.Md. Web Services Composer
 - automated e.g., planning for (semantic) web service assembly
 - COTS workflow engines and web services orchestration engines
 - Connectors to link component systems/services (with configuration) and adapt to changes during execution
 - Translators e.g., XSLT, schema/ontology mapping
 - Intelligent Agents for execution monitoring, repair
 - Integration infrastructures e.g., .NET, DISA NCES, J2EE, Jini, CoABS Agent Grid, other agent frameworks
 - HCI
 - specify new workflow e.g., GUIs
 - visualize information output from new workflow
 - visualize workflow properties (e.g., correctness analysis, risks) and execution status

© ISX Corporation, 2003.

Applicable Technologies – Interoperability Analysis

- Support a user (nonprogrammer) in V&V of a system of system (prior to and throughout execution)
 - Model composition
 - Model analysis (for correctness, QOS, etc.)
 - various techniques depending on modeling formalism(s) used – e.g., safety properties for Petri nets, theorem proving, etc.
 - Simulation

Help Wanted

(More) operational examples and analysis
 inputs to model from real-world studies

Refine key technologies list

- assess state of the art
 - today and tomorrow
 - commercial world and research community
- Help formulate program/research agenda
- Id transition partners

■ Make the case – weave above into a sellable story

- 25,000 foot view / elevator pitch
- detail for drilldown

Questions?

Acknowledgements ■ DARPA Dr. Robert Tenney and Dr. Mark Greaves US Army CECOM ■ Mr. John Soos and Mr. Jeff Harrold **Email:** Mark Greaves (<u>mgreaves(a)</u><u>darpa.mil</u>) Brian Kettler (<u>bkettler@isx.com</u>)

